精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=Asin(ωx+φ)( A>0,ω>0,$|φ|<\frac{π}{2}$)在一个周期内的图象如图所示,则$f({\frac{π}{6}})$=(  )
A.1B.$\sqrt{3}$C.-1D.$-\sqrt{3}$

分析 由图知,A=2,易求T=π,ω=2,由f($\frac{π}{12}$)=2,|φ|<$\frac{π}{2}$,可求得φ=$\frac{π}{3}$,从而可得函数y=f(x)的解析式,继而得f($\frac{π}{6}$)的值.

解答 解:由图知,A=2,且$\frac{3}{4}$T=$\frac{5π}{6}$-$\frac{π}{12}$=$\frac{3π}{4}$,
∴T=π,ω=2.
∴f(x)=2sin(2x+φ),
又f($\frac{π}{12}$)=2,
∴sin(2×$\frac{π}{12}$+φ)=1,
∴$\frac{π}{6}$+φ=2kπ+$\frac{π}{2}$(k∈Z),又|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{3}$,
∴f(x)=2sin(2x+$\frac{π}{3}$),
∴f($\frac{π}{6}$)=2sin$\frac{2π}{3}$=$\sqrt{3}$,
故选:B.

点评 本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,求φ是难点,考查识图与运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,则方程$f(x)=\frac{1}{2}$的解集为(  )
A.$\{\sqrt{2},-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}\}$B.$\{\sqrt{2},\frac{{\sqrt{2}}}{2}\}$C.$\{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}\}$D.$\{\sqrt{2},-\frac{{\sqrt{2}}}{2}\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.从装有3个红球和3个白球的口袋里任取3个球,那么互斥而不对立的两个事件是(  )
A.至少2个白球,都是红球B.至少1个白球,至少1个红球
C.至少2个白球,至多1个白球D.恰好1个白球,恰好2个红球

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\sqrt{|x-1|+|x+1|-m}$的定义域为R.
(1)求实数的取值范围m;
(2)若m的最大值为n,当正数a,b满足$\frac{2}{3a+b}$+$\frac{1}{a+2b}$=n时,求7a+4b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知A(-1,2),B(-2,4),则直线AB的斜率为(  )
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a,b,c分别是△ABC三个内角A,B,C所对的边,满足2c2-2a2=b2,求证:2ccosA-2acosC=b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在如图所示的几何体中,四边形ABCD为平行四边形,∠ABD=90°,EB⊥面ABCD,EF∥AB,AB=2,EB=$\sqrt{3}$的中点.
(1)求证:EM∥平面ADF;
(2)求二面角D-AF-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x),g(x)满足f(1)=1,f'(1)=1,g(1)=2,g'(1)=1,则函数F(x)=$\frac{f(x)^{2}}{g(x)}$的图象在x=1处的切线方程为(  )
A.3x-4y+5=0B.3x-4y-1=0.C.4x-3y-5=0D.4x-3y+5=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设$\overrightarrow{a},\overrightarrow{b}$是向量,则“|$\overrightarrow{a}$|=|$\overrightarrow{b}$|”是“|$\overrightarrow{a}+\overrightarrow{b}$|=|$\overrightarrow{a}-\overrightarrow{b}$|”的既不充分不必要条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分不必要”)

查看答案和解析>>

同步练习册答案