精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,则方程$f(x)=\frac{1}{2}$的解集为(  )
A.$\{\sqrt{2},-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}\}$B.$\{\sqrt{2},\frac{{\sqrt{2}}}{2}\}$C.$\{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}\}$D.$\{\sqrt{2},-\frac{{\sqrt{2}}}{2}\}$

分析 利用分段函数,分段代入求解,即可得出结论.

解答 解:x≤0,${x}^{2}=\frac{1}{2}$,∴x=-$\frac{\sqrt{2}}{2}$,
x>0,$lo{g}_{2}x=\frac{1}{2}$,∴x=$\sqrt{2}$,
∴方程$f(x)=\frac{1}{2}$的解集为{$\sqrt{2}$,-$\frac{\sqrt{2}}{2}$}.
故选D

点评 本题考查分段函数,考查方程的解,正确理解分段函数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=ln(-2x)+3x,则f′(-1)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点A(-2,3)在抛物线C:y2=2px的准线上,记C的焦点为F,则直线AF的斜率为(  )
A.-2B.-$\frac{4}{3}$C.-$\frac{3}{4}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx+$\frac{1}{a}$(α>0);
(1)如果函数F(x)=f(x)-ax+$\frac{1-α}{x}$在(1,2)内单调递增,求a的取值范围;
(2)若不等式af(x)≥x在区间[1,10]恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.曲线f(x)=x2+lnx上任意一点的切线为l1,曲线g(x)=ex-ax上总有一条切线l2与l1平行,则a的取值范围是(  )
A.$(-2\sqrt{2},2\sqrt{2})$B.$(-∞,-2\sqrt{2})$C.$(-2\sqrt{2},+∞)$D.$[-2\sqrt{2},2\sqrt{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将函数$y=sin(\frac{1}{2}x-\frac{π}{6})$的图象上的所有的点横坐标缩短为原来的$\frac{1}{2}$(纵坐标不变),再将所得的图象向右平移$\frac{π}{3}$个单位,则所得的函数图象对应的解析式为(  )
A.$y=cos(\frac{1}{4}x-\frac{π}{4})$B.y=-sinxC.y=-cosxD.$y=sin(x+\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{AB}$=(2-k,-1),$\overrightarrow{AC}$=(1,k).
(1)若A,B,C三点共线,求k的值;
(2)若△ABC为直角三角形,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在各项均为正数的数列{an}中,数列的前n项和为Sn,满足Sn=1-nan(n∈N*
(1)求a1,a2,a3的值;
(2)由(1)猜想出数列{an}的通项公式,并用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=Asin(ωx+φ)( A>0,ω>0,$|φ|<\frac{π}{2}$)在一个周期内的图象如图所示,则$f({\frac{π}{6}})$=(  )
A.1B.$\sqrt{3}$C.-1D.$-\sqrt{3}$

查看答案和解析>>

同步练习册答案