精英家教网 > 高中数学 > 题目详情
19.已知点A(-2,3)在抛物线C:y2=2px的准线上,记C的焦点为F,则直线AF的斜率为(  )
A.-2B.-$\frac{4}{3}$C.-$\frac{3}{4}$D.-$\frac{1}{2}$

分析 由题意求得抛物线方程,求得焦点坐标,利用直线的斜率公式即可求得直线AF的斜率.

解答 解:由点A(-2,3)在抛物线C:y2=2px的准线上,
即-2=-$\frac{p}{2}$,则p=4,
故抛物线的焦点坐标为:(2,0),
则直线AF的斜率k=$\frac{3-0}{-2-2}$=-$\frac{3}{4}$,
故选C.

点评 本题考查抛物线的简单几何性质,抛物线的焦点坐标及准线方程,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x3+x.
(1)求定积分$\int_{-3}^3{({f(x)+{x^2}})dx}$的值;
(2)若曲线y=f(x)的一条切线经过点(0,-2),求此切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在平面四边形ABCD中,AD=1,CD=2,AC=$\sqrt{7}$.cos∠BAD=-$\frac{\sqrt{7}}{14}$,sin∠CBA=$\frac{\sqrt{21}}{6}$,则BC的长为(  )
A.$\sqrt{7}$B.2C.3D.2$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数$y=tan(\frac{π}{4}-x)$的定义域是(  )
A.{x|x≠$\frac{π}{4}$,k∈Z x∈R}B.{x|x≠kπ$+\frac{π}{4}$,k∈Z,x∈R}
C.{x|x≠$-\frac{π}{4}$,k∈Z x∈R}D.{x|x≠kπ$+\frac{3}{4}π$,k∈Z,x∈R}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=-$\frac{1}{3}$x3+ax2+bx+ab,x∈R,其中a,b∈R.
(Ⅰ)若函数f(x)在x=1处有极小值-$\frac{22}{3}$,求a.b的值;
(Ⅱ)若|a|>1,设g(x)=|f′(x)|,求证:当x∈[-1,1]时,g(x)max>2;
(Ⅲ)若a>1,b<1-2a,对于给定x1,x2∈(-∞,1),x1<x2,α=mx1+(1-m)x2,β=(1-m)x1+mx2,其中m∈R,α<1,β<1,若|f(α)-f(β)|<|f(x1)-f(x2)|,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为$\frac{1}{7}$,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的.
(Ⅰ)求袋中原有白球的个数;
(Ⅱ)求取球次数X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=-$\frac{1}{4}$,则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,则方程$f(x)=\frac{1}{2}$的解集为(  )
A.$\{\sqrt{2},-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}\}$B.$\{\sqrt{2},\frac{{\sqrt{2}}}{2}\}$C.$\{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}\}$D.$\{\sqrt{2},-\frac{{\sqrt{2}}}{2}\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.从装有3个红球和3个白球的口袋里任取3个球,那么互斥而不对立的两个事件是(  )
A.至少2个白球,都是红球B.至少1个白球,至少1个红球
C.至少2个白球,至多1个白球D.恰好1个白球,恰好2个红球

查看答案和解析>>

同步练习册答案