| A. | $(-2\sqrt{2},2\sqrt{2})$ | B. | $(-∞,-2\sqrt{2})$ | C. | $(-2\sqrt{2},+∞)$ | D. | $[-2\sqrt{2},2\sqrt{2}]$ |
分析 分别求得f(x),g(x)的导数,设M(x1,y1),N(x2,y2)分别是曲线f(x),g(x)上的点,求得切线的斜率,由两直线平行的条件可得切线的斜率相等,运用基本不等式和指数函数的值域可得最值,进而得到a的范围.
解答 解:f(x)=x2+lnx的导数为f′(x)=2x+$\frac{1}{x}$,g(x)=ex-ax的导数为g′(x)=ex-a,
设M(x1,y1),N(x2,y2)分别是曲线f(x),g(x)上的点,
所以在M,N处的切线的斜率为${k_1}=2{x_1}+\frac{1}{x_1}$,${k_2}={e^{x_2}}-a$,
由已知可得k1=k2,即$2{x_1}+\frac{1}{x_1}={e^{x_2}}-a$对?x1>0有解.
而$2{x_1}+\frac{1}{x_1}≥2\sqrt{2}$,当且仅当x1=$\frac{\sqrt{2}}{2}$处取得等号,
所以$h(x)={e^{x_2}}-a$最小值$h{(x)_{min}}≤2\sqrt{2}$,
即$-a<2\sqrt{2}$,
所以$a>-2\sqrt{2}$,
故选C.
点评 本题考查了利用导数研究过曲线上的某点的切线方程,考查了数学转化思想方法,解答此题的关键是把问题转化为最值间的关系求解,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{1}{2}$,1) | B. | [$\frac{\sqrt{2}}{2},\frac{\sqrt{3}}{2}$] | C. | [$\frac{\sqrt{2}}{2}$,1] | D. | [$\frac{\sqrt{3}}{2}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\{\sqrt{2},-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}\}$ | B. | $\{\sqrt{2},\frac{{\sqrt{2}}}{2}\}$ | C. | $\{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}\}$ | D. | $\{\sqrt{2},-\frac{{\sqrt{2}}}{2}\}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com