20£®ÒÑÖªÅ×ÎïÏßC£ºx2=2py£¨p£¾0£©µÄ½¹µãΪF£¬¹ýÅ×ÎïÏßÉÏÒ»µãP×÷Å×ÎïÏßCµÄÇÐÏßl½»xÖáÓÚµãD£¬½»yÖáÓÚµãQ£¬µ±|FD|=2ʱ£¬¡ÏPFD=60¡ã£®
£¨1£©Åжϡ÷PFQµÄÐÎ×´£¬²¢ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨2£©ÈôA£¬BÁ½µãÔÚÅ×ÎïÏßCÉÏ£¬ÇÒÂú×ã$\overrightarrow{AM}+\overrightarrow{BM}=0$£¬ÆäÖеãM£¨2£¬2£©£¬ÈôÅ×ÎïÏßCÉÏ´æÔÚÒìÓÚA¡¢BµÄµãH£¬Ê¹µÃ¾­¹ýA¡¢B¡¢HÈýµãµÄÔ²ºÍÅ×ÎïÏßÔÚµãH´¦ÓÐÏàͬµÄÇÐÏߣ¬ÇóµãHµÄ×ø±ê£®

·ÖÎö £¨1£©ÉèP£¨x1£¬y1£©£¬Çó³öÇÐÏßlµÄ·½³Ì£¬Çó½âÈý½ÇÐεĶ¥µã×ø±ê£¬Åųý±ß³¤¹ØÏµ£¬È»ºóÅжÏÈý½ÇÐεÄÐÎ×´£¬È»ºóÇó½âÅ×ÎïÏß·½³Ì£®
£¨2£©Çó³öA£¬BµÄ×ø±ê·Ö±ðΪ£¨0£¬0£©£¬£¨4£¬4£©£¬ÉèH£¨x0£¬y0£©£¨x0¡Ù0£¬x0¡Ù4£©£¬Çó³öABµÄÖд¹Ïß·½³Ì£¬AHµÄÖд¹Ïß·½³Ì£¬½âµÃÔ²ÐÄ×ø±ê£¬ÓÉ${k_{NH}}•\frac{x_0}{2}=-1$£¬Çó½âHµã×ø±ê¼´¿É£®

½â´ð ½â£º£¨1£©ÉèP£¨x1£¬y1£©£¬
ÔòÇÐÏßlµÄ·½³ÌΪ$y=\frac{x_1}{p}x-\frac{x_1^2}{2p}$£¬ÇÒ${y_1}=\frac{x_1^2}{2p}$£¬
ËùÒÔ$D£¨{\frac{x_1}{2}£¬0}£©£¬Q£¨{0£¬-{y_1}}£©£¬|{FQ}|=\frac{p}{2}+{y_1}$£¬$|{PF}|=\frac{p}{2}+{y_1}$£¬ËùÒÔ|FQ|=|FP|£¬
ËùÒÔ¡÷PFQΪµÈÑüÈý½ÇÐΣ¬ÇÒDΪPQµÄÖе㣬
ËùÒÔDF¡ÍPQ£¬ÒòΪ|DF|=2£¬¡ÏPFD=60¡ã£¬
ËùÒÔ¡ÏQFD=60¡ã£¬ËùÒÔ$\frac{p}{2}=1$£¬µÃp=2£¬
ËùÒÔÅ×ÎïÏß·½³ÌΪx2=4y£»
£¨2£©ÓÉÒÑÖª£¬µÃA£¬BµÄ×ø±ê·Ö±ðΪ£¨0£¬0£©£¬£¨4£¬4£©£¬
ÉèH£¨x0£¬y0£©£¨x0¡Ù0£¬x0¡Ù4£©£¬
ABµÄÖд¹Ïß·½³ÌΪy=-x+4£¬¢ÙAHµÄÖд¹Ïß·½³ÌΪ$y=-\frac{4}{x_0}x+2+\frac{x_0^2}{8}$£¬¢Ú
ÁªÁ¢¢Ù¢Ú£¬½âµÃÔ²ÐÄ×ø±êΪ£º$N£¨{-\frac{{x_0^2+4{x_0}}}{8}£¬\frac{{x_0^2+4{x_0}+32}}{8}}£©$£¬
kNH=$\frac{\frac{{{x}_{0}}^{2}+4{x}_{0}+32}{8}-\frac{{{x}_{0}}^{2}}{4}}{-\frac{{{x}_{0}}^{2}+4{x}_{0}}{8}-{x}_{0}}$=$\frac{{{x}_{0}}^{2}-4{x}_{0}-32}{{{x}_{0}}^{2}+12{x}_{0}}$£¬
ÓÉ${k_{NH}}•\frac{x_0}{2}=-1$£¬µÃ$x_0^3-2x_0^2-8{x_0}=0$£¬
ÒòΪx0¡Ù0£¬x0¡Ù4£¬ËùÒÔx0=-2£¬
ËùÒÔHµã×ø±êΪ£¨-2£¬1£©£®

µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÅ×ÎïÏßµÄλÖùØÏµµÄÓ¦Óã¬Ö±ÏßÓëÔ²µÄλÖùØÏµ£¬¿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èô¹ØÓÚx²»µÈʽxlnx-x3+x2¡Üaexºã³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[e£¬+¡Þ£©B£®[0£¬+¡Þ£©C£®$[\frac{1}{e}£¬+¡Þ£©$D£®[1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Ä³Â·¿ÚÈËÐкáµÀµÄÐźŵÆÎªºìµÆºÍÂ̵ƽ»Ìæ³öÏÖ£¬ºìµÆ³ÖÐøÊ±¼äΪ80Ã룮ÈôÒ»ÃûÐÐÈËÀ´µ½¸Ã·¿ÚÓöµ½ºìµÆ£¬ÔòÖÁÉÙÐèÒªµÈ´ý30Ãë²Å³öÏÖÂ̵ƵĸÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{3}{8}$B£®$\frac{5}{8}$C£®$\frac{1}{4}$D£®$\frac{3}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÇúÏßf£¨x£©=x2+lnxÉÏÈÎÒâÒ»µãµÄÇÐÏßΪl1£¬ÇúÏßg£¨x£©=ex-axÉÏ×ÜÓÐÒ»ÌõÇÐÏßl2Óël1ƽÐУ¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$£¨-2\sqrt{2}£¬2\sqrt{2}£©$B£®$£¨-¡Þ£¬-2\sqrt{2}£©$C£®$£¨-2\sqrt{2}£¬+¡Þ£©$D£®$[-2\sqrt{2}£¬2\sqrt{2}]$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªPÊÇ¡÷ABCÄÚÒ»µã£¬ÇÒÂú×ã2$\overrightarrow{PA}$+3$\overrightarrow{PB}$+4$\overrightarrow{PC}$=$\overrightarrow{0}$£¬ÄÇôS¡÷PBC£ºSPCA£ºS¡÷PABµÈÓÚ£¨¡¡¡¡£©
A£®4£º3£º2B£®2£º3£º4C£®$\frac{1}{4}$£º$\frac{1}{3}$£º$\frac{1}{2}$D£®$\frac{1}{2}$£º$\frac{1}{3}$£º$\frac{1}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÏòÁ¿$\overrightarrow{AB}$=£¨2-k£¬-1£©£¬$\overrightarrow{AC}$=£¨1£¬k£©£®
£¨1£©ÈôA£¬B£¬CÈýµã¹²Ïߣ¬ÇókµÄÖµ£»
£¨2£©Èô¡÷ABCΪֱ½ÇÈý½ÇÐΣ¬ÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªÊýÁÐ{an}ͨÏîan=2n-1£¬ÇÒÊýÁÐ{$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$}µÄǰmÏîºÍΪ5£¬Ôòm=60£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®º¯Êý$f£¨x£©=\frac{x^3}{3}+\frac{1}{x}$µÄµ¼Êýf'£¨x£©=£¨¡¡¡¡£©
A£®$\frac{x^2}{3}+\frac{1}{x}$B£®${x^2}-\frac{1}{x^2}$C£®$-{x^2}-\frac{1}{x^2}$D£®x2+lnx

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®´Ó1£¬2£¬3£¬4ÖÐÈÎÈ¡Á½¸öÊý£¬¼Ç×÷a£¬b£¬ÔòÁ½ÊýÖ®ºÍa+bСÓÚ5µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{5}{6}$B£®$\frac{3}{4}$C£®$\frac{1}{2}$D£®$\frac{1}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸