·ÖÎö £¨1£©ÉèP£¨x1£¬y1£©£¬Çó³öÇÐÏßlµÄ·½³Ì£¬Çó½âÈý½ÇÐεĶ¥µã×ø±ê£¬Åųý±ß³¤¹ØÏµ£¬È»ºóÅжÏÈý½ÇÐεÄÐÎ×´£¬È»ºóÇó½âÅ×ÎïÏß·½³Ì£®
£¨2£©Çó³öA£¬BµÄ×ø±ê·Ö±ðΪ£¨0£¬0£©£¬£¨4£¬4£©£¬ÉèH£¨x0£¬y0£©£¨x0¡Ù0£¬x0¡Ù4£©£¬Çó³öABµÄÖд¹Ïß·½³Ì£¬AHµÄÖд¹Ïß·½³Ì£¬½âµÃÔ²ÐÄ×ø±ê£¬ÓÉ${k_{NH}}•\frac{x_0}{2}=-1$£¬Çó½âHµã×ø±ê¼´¿É£®
½â´ð ½â£º£¨1£©ÉèP£¨x1£¬y1£©£¬
ÔòÇÐÏßlµÄ·½³ÌΪ$y=\frac{x_1}{p}x-\frac{x_1^2}{2p}$£¬ÇÒ${y_1}=\frac{x_1^2}{2p}$£¬
ËùÒÔ$D£¨{\frac{x_1}{2}£¬0}£©£¬Q£¨{0£¬-{y_1}}£©£¬|{FQ}|=\frac{p}{2}+{y_1}$£¬$|{PF}|=\frac{p}{2}+{y_1}$£¬ËùÒÔ|FQ|=|FP|£¬
ËùÒÔ¡÷PFQΪµÈÑüÈý½ÇÐΣ¬ÇÒDΪPQµÄÖе㣬
ËùÒÔDF¡ÍPQ£¬ÒòΪ|DF|=2£¬¡ÏPFD=60¡ã£¬
ËùÒÔ¡ÏQFD=60¡ã£¬ËùÒÔ$\frac{p}{2}=1$£¬µÃp=2£¬
ËùÒÔÅ×ÎïÏß·½³ÌΪx2=4y£»
£¨2£©ÓÉÒÑÖª£¬µÃA£¬BµÄ×ø±ê·Ö±ðΪ£¨0£¬0£©£¬£¨4£¬4£©£¬
ÉèH£¨x0£¬y0£©£¨x0¡Ù0£¬x0¡Ù4£©£¬
ABµÄÖд¹Ïß·½³ÌΪy=-x+4£¬¢ÙAHµÄÖд¹Ïß·½³ÌΪ$y=-\frac{4}{x_0}x+2+\frac{x_0^2}{8}$£¬¢Ú
ÁªÁ¢¢Ù¢Ú£¬½âµÃÔ²ÐÄ×ø±êΪ£º$N£¨{-\frac{{x_0^2+4{x_0}}}{8}£¬\frac{{x_0^2+4{x_0}+32}}{8}}£©$£¬
kNH=$\frac{\frac{{{x}_{0}}^{2}+4{x}_{0}+32}{8}-\frac{{{x}_{0}}^{2}}{4}}{-\frac{{{x}_{0}}^{2}+4{x}_{0}}{8}-{x}_{0}}$=$\frac{{{x}_{0}}^{2}-4{x}_{0}-32}{{{x}_{0}}^{2}+12{x}_{0}}$£¬
ÓÉ${k_{NH}}•\frac{x_0}{2}=-1$£¬µÃ$x_0^3-2x_0^2-8{x_0}=0$£¬
ÒòΪx0¡Ù0£¬x0¡Ù4£¬ËùÒÔx0=-2£¬
ËùÒÔHµã×ø±êΪ£¨-2£¬1£©£®
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÅ×ÎïÏßµÄλÖùØÏµµÄÓ¦Óã¬Ö±ÏßÓëÔ²µÄλÖùØÏµ£¬¿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | [e£¬+¡Þ£© | B£® | [0£¬+¡Þ£© | C£® | $[\frac{1}{e}£¬+¡Þ£©$ | D£® | [1£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{3}{8}$ | B£® | $\frac{5}{8}$ | C£® | $\frac{1}{4}$ | D£® | $\frac{3}{5}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $£¨-2\sqrt{2}£¬2\sqrt{2}£©$ | B£® | $£¨-¡Þ£¬-2\sqrt{2}£©$ | C£® | $£¨-2\sqrt{2}£¬+¡Þ£©$ | D£® | $[-2\sqrt{2}£¬2\sqrt{2}]$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4£º3£º2 | B£® | 2£º3£º4 | C£® | $\frac{1}{4}$£º$\frac{1}{3}$£º$\frac{1}{2}$ | D£® | $\frac{1}{2}$£º$\frac{1}{3}$£º$\frac{1}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{x^2}{3}+\frac{1}{x}$ | B£® | ${x^2}-\frac{1}{x^2}$ | C£® | $-{x^2}-\frac{1}{x^2}$ | D£® | x2+lnx |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{5}{6}$ | B£® | $\frac{3}{4}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{1}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com