| A. | 3x-4y+5=0 | B. | 3x-4y-1=0. | C. | 4x-3y-5=0 | D. | 4x-3y+5=0 |
分析 由求导公式可得F′(x)=$\frac{f(x)[2f′(x)g(x)-f(x)g′(x)]}{{g}^{2}(x)}$,故根据导数的几何意义可得k=F′(1)=$\frac{3}{4}$;又由题意求出切点,代入直线的点斜式方程即可求解.
解答 解:∵F(x)=$\frac{f(x)^{2}}{g(x)}$,
∴F′(x)=$\frac{f(x)[2f′(x)g(x)-f(x)g′(x)]}{{g}^{2}(x)}$,
∴k=F′(1)=$\frac{3}{4}$;
∵F(1)=$\frac{1}{2}$,
∴切点为(1,$\frac{1}{2}$),
∴切线方程为y-$\frac{1}{2}$=$\frac{3}{4}$(x-1),
整理得 3x-4y-1=0.
故选B.
点评 本题考查了导数的运算和导数的几何意义,其中商的求导法则是难点也是易错点.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{3}$ | C. | -1 | D. | $-\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,2] | B. | [0,2] | C. | [-1,1] | D. | (0,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{4}{5}$ | B. | $\frac{4}{5}$ | C. | -$\frac{7}{25}$ | D. | $\frac{7}{25}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com