科目:高中数学 来源: 题型:
一个椭圆中心在原点,焦点F1,F2在x轴上,P(2,
)是椭圆上一点,且|PF1|,|F1F2|,|PF2|成等差数列,则椭圆方程为( )
A.
+
=1 B.
+
=1
C.
+
=1 D.
+
=1
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在平面直角坐标系xOy中,F1,F2分别是椭圆
+
=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.
(1)若点C的坐标为
,且BF2=
,求椭圆的方程;
(2)若F1C⊥AB,求椭圆离心率e的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
双曲线
-
=1(a>0,b>0)的左、右焦点分别为F1,F2,渐近线分别为l1,l2,点P在第一象限内且在l1上,若l2⊥PF1,l2∥PF2,则该双曲线的离心率为( )
A.
B.2
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知双曲线C:
-
=1(a>0,b>0)的离心率为2,A,B为其左,右顶点,点P为双曲线C在第一象限的任意一点,点O为坐标原点,若PA,PB,PO的斜率为k1,k2,k3,则m=k1k2k3的取值范围为( )
A.(0,3
) B.(0,
)
C.
D.(0,8)
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,曲线C由上半椭圆C1:
+
=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为
.
![]()
(1)求a,b的值;
(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com