精英家教网 > 高中数学 > 题目详情
求值:cos2α+cos2(α+120°)+cos2(α+240°)的值为 ______.
cos2α+cos2(α+120°)+cos2(α+240°)=cos2α+cos2(α-60°)+cos2(α+60°)=cos2α+
1
2
cos2α+
3
2
sin2α=
3
2

故答案为:
3
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网A、B是单位圆O上的动点,且A、B分别在第一、二象限,C是圆O与x轴正半轴的交点,△AOB 为等腰直角三角形.记∠AOC=α.
(1)若A点的坐标为(
3
5
4
5
),求 
sin2α+sin2α
cos2α+cos2α
的值;
(2)求|BC|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,C为锐角,角A,B,C所对应的边分别为a,b,c,且cos2A=
3
5
,sinC=
10
10

(1)求cos(A+C)的值;
(2)若a-c=
2
-1
,求a,b,c的值;
(3)已知tan(α+A+C)=2,求
1
2sinαcosα+cos2α
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三点A、B、C的坐标分别为A(cosα,sinα)(α≠
4
,k∈Z)
,B(3,0),C(0,3),若
AB
AC
=-1
,求
1+sin2α-cos2α
1+tanα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B是单位圆O上的动点,且A、B分别在第一、二象限,C是圆O与x轴正半轴的交点,△AOB为等腰直角三角形,记∠AOC=α.
(1)求A点的坐标为(
3
5
4
5
),求
sin2α+sin2α
cos2α+cos2α
的值;
(2)求|BC|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•嘉定区三模)如图,设A、B是单位圆O上的动点,且A、B分别在第一、二象限.C是圆O与x轴正半轴的交点,△AOB为等边三角形.记以Ox轴正半轴为始边,射线OA为终边的角为θ.
(1)若点A的坐标为(
3
5
4
5
),求
sin2θ+sin2θ
cos2θ+cos2θ
的值;
(2)设f(θ)=|BC|2,求函数f(θ)的解析式和值域.

查看答案和解析>>

同步练习册答案