精英家教网 > 高中数学 > 题目详情
抛物线的焦点轴正半轴上,过斜率为的直线轴交于点,且(为坐标原点)的面积为,求抛物线的标准方程.

试题分析:先根据抛物线方程表示出F的坐标,进而根据点斜式表示出直线l的方程,求得A的坐标,进而利用三角形面积公式表示出三角形的面积建立等式取得a,则抛物线的方程可得.
解:设抛物线方程为     
则焦点坐标为,直线的方程为
它与轴的交点为,    
所以的面积为
解得,所以抛物线方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线的方程为,直线的方程为,点关于直线的对称点在抛物线上.
(1)求抛物线的方程;
(2)已知,求过点及抛物线与轴两个交点的圆的方程;
(3)已知,点是抛物线的焦点,是抛物线上的动点,求的最小值及此时点的坐标;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A,B两点,若线段AB的长为8,则p=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2013·江西高考]抛物线x2=2py(p>0)的焦点为F,其准线与双曲线=1相交于A,B两点,若△ABF为等边三角形,则p=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设抛物线的焦点为为抛物线上一点,,则的取值范围是    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P是抛物线y2=4x上一动点,则点P到直线l:2x-y+3=0与到y轴的距离之和的最小值是(  )
A.B.C.2 D.-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线焦点F的直线交抛物线于A、B两点,若A、B在抛物线准线上的射影分别为
,则(   )
A.   B.  C.   D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线y2=2x的焦点F作直线交抛物线于A,B两点,若|AB|=,|AF|<|BF|,则|AF|为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点坐标为.

查看答案和解析>>

同步练习册答案