精英家教网 > 高中数学 > 题目详情
5.在区间[0,1]上任取两个数,则这两个数之和小于$\frac{8}{5}$的概率是(  )
A.$\frac{2}{5}$B.$\frac{16}{25}$C.$\frac{17}{25}$D.$\frac{23}{25}$

分析 本题是一个等可能事件的概率,试验发生包含的事件是在区间[0,1]上任取两个数a和b,写出事件对应的集合,做出面积,满足条件的事件是a+b<$\frac{8}{5}$,写出对应的集合,做出面积,得到概率.

解答 解:由题意知本题是一个等可能事件的概率,
∵试验发生包含的事件是在区间[0,1]上任取两个数a和b,
事件对应的集合是Ω={(a,b)|0≤a≤1,0≤b≤1}
对应的面积是sΩ=1
满足条件的事件是a+b<$\frac{8}{5}$,事件对应的集合是A={(a,b)|0≤a≤1,0≤b≤1,a+b<$\frac{8}{5}$}
对应的图形的面积是sA=1-$\frac{1}{2}×\frac{2}{5}×\frac{2}{5}$=1-$\frac{2}{25}$=$\frac{23}{25}$
∴根据等可能事件的概率得到P=$\frac{23}{25}$,
故选D.

点评 本题考查等可能事件的概率,是一个几何概型,几何概型的概率的值是通过长度、面积、和体积、的比值得到结果,是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,AB∥CD,△PAD是等边三角形,平面PAD⊥平面ABCD,已知AD=2,$BD=2\sqrt{3}$,AB=2CD=4.
(1)设M是PC上一点,求证:平面MBD⊥平面PAD;
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的非负半轴,建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+m}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t是参数).
(1)将曲线C的极坐标方程和直线l的参数方程转化为普通方程;
(2)若直线l与曲线C相交于A、B两点,且|AB|=$\sqrt{14}$,试求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若向量$\vec a=(1,λ,2),\vec b=(2,-1,2)$,且$\vec a$与$\vec b$的夹角余弦为$\frac{8}{9}$,则λ等于(  )
A.-2或$\frac{2}{55}$B.-2C.2D.2或$-\frac{2}{55}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.数列{an}满足a1=$\frac{4}{3}$,an+1-1=an(an-1)(n∈N*),且Sn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$,则Sn的整数部分的所有可能值构成的集合是(  )
A.{0,1,2}B.{0,1,2,3}C.{1,2}D.{0,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若关于x的方程log${\;}_{\frac{1}{3}}$(a-3x)=x-2有解,则实数a的最小值为(  )
A.4B.6C.8D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.直线l的方程为2x-y=0是“直线l平分圆(x-1)2+(y-2)2=1的周长”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数z满足z•i=2+3i,则在复平面内z对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,且满足b2-a2=ac,则$\frac{1}{tanA}$-$\frac{1}{tanB}$的取值范围为(1,$\frac{2\sqrt{3}}{3}$).

查看答案和解析>>

同步练习册答案