精英家教网 > 高中数学 > 题目详情
19.若直线y=k(x+1)上存在点(x,y)满足约束条件$\left\{\begin{array}{l}{x-y+\sqrt{3}≥0}\\{\sqrt{3}x-y-\sqrt{3}≤0}\\{y≥\sqrt{3}}\\{\;}\end{array}\right.$,则直线y=k(x+1)的倾斜角的取值范围为$[{\frac{π}{6},\frac{π}{3}}]$.

分析 由约束条件作出可行域,求出直线所过定点,求出直线与可行域中点连线斜率的最小值和最大值,再由斜率等于直线倾斜角的正切值得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x-y+\sqrt{3}≥0}\\{\sqrt{3}x-y-\sqrt{3}≤0}\\{y≥\sqrt{3}}\end{array}\right.$作出可行域如图,
直线y=k(x+1)过定点P(-1,0),
由图可知A($2,\sqrt{3}$),B(0,$\sqrt{3}$),
则${k}_{PA}=\frac{\sqrt{3}}{3},{k}_{PB}=\sqrt{3}$,
∴直线PA的倾斜角为$\frac{π}{6}$,直线PB的倾斜角为$\frac{π}{3}$.
则函数y=k(x+1)表示的直线的倾斜角的取值范围为$[\frac{π}{6},\frac{π}{3}]$.
故答案为:$[{\frac{π}{6},\frac{π}{3}}]$.

点评 本题主要考查线性规划的应用以及直线斜率的求解,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>0,b>0)的长轴长等于圆C2:x2+y2=4的直径,且C1的离心率等于$\frac{1}{2}$.直线l1和l2是过点M(1,0)互相垂直的两条直线,l1交C1于A,B两点,l2交C2于C,D两点.
(I)求C1的标准方程;
(Ⅱ)当四边形ABCD的面积为$\frac{12}{7}\sqrt{14}$时,求直线l1的斜率k(k>0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,长轴AB上2016个等分点从左到右依次为点M1,M2,…,M2015,过M1点作斜率为k(k≠0)的直线,交椭圆C于P1,P2两点,P1点在x轴上方;过M2点作斜率为k(k≠0)的直线,交椭圆C于P3,P4两点,P3点在x轴上方;以此类推,过M2015点作斜率为k(k≠0)的直线,交椭圆C于P4029,P4030两点,P4029点在x轴上方,则4030条直线AP1,AP2,…,AP4030的斜率乘积为-2-2015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若椭圆上的点到焦点的距离的最小值为5,最大值为15,则椭圆的短轴长为10$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,F为该椭圆的右焦点,若AB为垂直于x轴的动弦,直线l:x=4与x轴交于点N,直线AF与BN交于点M(x0,y0).
(1)求证:$\frac{{x}_{0}^{2}}{4}$+$\frac{{y}_{0}^{2}}{3}$=1;
(2)求△AMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(2x+φ)在x=$\frac{π}{6}$处取得极大值,则函数y=f($\frac{π}{4}$+x)的图象(  )
A.关于点($\frac{π}{6}$,0)对称B.关于点($\frac{π}{3}$,0)对称
C.关于直线x=$\frac{π}{6}$对称D.关于直线x=$\frac{π}{3}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在三个数$\frac{1}{2},{2^{-\frac{1}{2}}}.{log_3}$2中,最小的数是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知(ax+$\frac{1}{x}$)6二项展开式的第五项系数为$\frac{15}{2}$,则正实数a的值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,已知a=2,B=45°,cosA=-$\frac{3}{5}$.
(1)求b、c边的长;
(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案