精英家教网 > 高中数学 > 题目详情
7.若椭圆上的点到焦点的距离的最小值为5,最大值为15,则椭圆的短轴长为10$\sqrt{3}$.

分析 不妨设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),a2=b2+c2.利用已知可得a-c=5,a+c=15,解出即可得出.

解答 解:不妨设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),a2=b2+c2
∵椭圆上的点到焦点的距离的最小值为5,最大值为15,
∴a-c=5,a+c=15,
∴b2=a2-c2=5×15=75.
∴b=5$\sqrt{3}$.
则椭圆的短轴长为10$\sqrt{3}$.
故答案为:10$\sqrt{3}$.

点评 本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知圆x2+y2=R2过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的右焦点F,且与双曲线在第一,三象限的交点分别为M,N,若∠MNF=$\frac{π}{12}$时,则该双曲线的渐近线方程为(  )
A.y=$±\frac{\sqrt{3}}{3}$xB.y=$±\sqrt{3}$xC.y=±xD.y=±2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知中心在原点,焦点在y轴上的椭圆C,其上一点P到两个焦点F1,F2的距离之和为4,离心率为$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆C的方程;
(2)若直线y=kx+1与曲线C交于A,B两点,求△AOB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点和一个顶点在圆x2+y2=4上.
(1)求椭圆的方程;
(2)已知点P(-3,2),若斜率为1的直线l与椭圆G相交于A、B两点,试探讨以AB为底边的等腰三角形ABP是否存在?若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知F1(-1,0)和F2(1,0)是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,且点$P(1\;,\;\frac{3}{2})$在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l:y=kx+m(m>0)与椭圆C有且仅有一个公共点,且与x轴和y轴分别交于点M,N,当△OMN面积取最小值时,求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图是60名学生参加数学竞赛的成绩(均为整数)的频率分布直方图,估计这次数学竞赛的及格率是(  )
A.75%B.25%C.15%D.40%

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若直线y=k(x+1)上存在点(x,y)满足约束条件$\left\{\begin{array}{l}{x-y+\sqrt{3}≥0}\\{\sqrt{3}x-y-\sqrt{3}≤0}\\{y≥\sqrt{3}}\\{\;}\end{array}\right.$,则直线y=k(x+1)的倾斜角的取值范围为$[{\frac{π}{6},\frac{π}{3}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=-cos2x-8sinx+9.则函数f(x)的最小值为(  )
A.2B.0C.18D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|y=$\sqrt{4-{x}^{2}}$},B={x|a≤x≤a+1},若A∪B=A,则实数a的取值范围为(  )
A.(-∞,-3]∪[2,+∞)B.[-1,2]C.[-2,1]D.[2,+∞)

查看答案和解析>>

同步练习册答案