分析 不妨设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),a2=b2+c2.利用已知可得a-c=5,a+c=15,解出即可得出.
解答 解:不妨设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),a2=b2+c2.
∵椭圆上的点到焦点的距离的最小值为5,最大值为15,
∴a-c=5,a+c=15,
∴b2=a2-c2=5×15=75.
∴b=5$\sqrt{3}$.
则椭圆的短轴长为10$\sqrt{3}$.
故答案为:10$\sqrt{3}$.
点评 本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | y=$±\frac{\sqrt{3}}{3}$x | B. | y=$±\sqrt{3}$x | C. | y=±x | D. | y=±2x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 75% | B. | 25% | C. | 15% | D. | 40% |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-3]∪[2,+∞) | B. | [-1,2] | C. | [-2,1] | D. | [2,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com