精英家教网 > 高中数学 > 题目详情
15.已知椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点和一个顶点在圆x2+y2=4上.
(1)求椭圆的方程;
(2)已知点P(-3,2),若斜率为1的直线l与椭圆G相交于A、B两点,试探讨以AB为底边的等腰三角形ABP是否存在?若存在,求出直线l的方程,若不存在,说明理由.

分析 (Ⅰ)设椭圆G的右焦点为F(c,0),由题意可得:b=c,且b2+c2=8,由此能求出椭圆G的方程.
(Ⅱ)以AB为底的等腰三角形ABP存在.设斜率为1的直线l的方程为y=x+m,代入$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$中,得:3x2+4mx+2m2-8=0,由此利用根的判别式、韦达定理,结合已知条件能求出直线l的方程.

解答 解:(Ⅰ)设椭圆G的右焦点为F(c,0),
由题意可得:b=c,且b2+c2=8,∴b2=c2=4,
故a2=b2+c2=8,
∴椭圆G的方程为$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$(4分)
(Ⅱ)以AB为底的等腰三角形ABP存在.理由如下
设斜率为1的直线l的方程为y=x+m,代入$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$中,
化简得:3x2+4mx+2m2-8=0,①(6分)
因为直线l与椭圆G相交于A,B两点,
∴△=16m2-12(2m2-8)>0,
解得-2$\sqrt{3}$$<m<2\sqrt{3}$,②(8分)
设A(x1,y1),B(x2,y2),则${x}_{1}+{x}_{2}=-\frac{4m}{3}$,${x}_{1}{x}_{2}=\frac{2{m}^{2}-8}{3}$.③
于是AB的中点M(x0,y0)满足${x}_{0}=\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{2m}{3}$,${y}_{0}={x}_{0}+m=\frac{m}{3}$.
已知点P(-3,2),若以AB为底的等腰三角形ABP存在,
则kPM=-1,即$\frac{{y}_{0}-2}{{x}_{0}+3}$=-1,④,将M(-$\frac{2m}{3},\frac{m}{3}$)代入④式,
得m=3∈(-2$\sqrt{3}$,2$\sqrt{3}$)满足②(10分)
此时直线l的方程为y=x+3.(12分)

点评 本题考查椭圆方程的求法,考查直线方程的求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1和$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=-1(a>0,b>0)的离心率分别为e1,e2,且连接两条双曲线顶点所得四边形的面积为S1,连接两条双曲线的焦点所得四边形的面积为S2,试探究:
(1)e1与e2之间的关系式;
(2)$\frac{{S}_{1}}{{S}_{2}}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义在区间(0,+∞)上的函数f(x)使不等式2f(x)<xf′(x)<3f(x)恒成立,其中f′(x)为f(x)的导数,则(  )
A.8<$\frac{f(2)}{f(1)}$<16B.4<$\frac{f(2)}{f(1)}$<8C.3<$\frac{f(2)}{f(1)}$<4D.2<$\frac{f(2)}{f(1)}$<3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知曲线C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0,y≤0)的离心率e=$\frac{\sqrt{6}}{3}$,且经过点G(1,-$\frac{\sqrt{6}}{3}$),曲线C2:x2=2y,过曲线C1上一点P作C2的两条切线,切点分别为A,B.
(Ⅰ)求曲线C1的方程;
(Ⅱ)求△PAB面积的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,长轴AB上2016个等分点从左到右依次为点M1,M2,…,M2015,过M1点作斜率为k(k≠0)的直线,交椭圆C于P1,P2两点,P1点在x轴上方;过M2点作斜率为k(k≠0)的直线,交椭圆C于P3,P4两点,P3点在x轴上方;以此类推,过M2015点作斜率为k(k≠0)的直线,交椭圆C于P4029,P4030两点,P4029点在x轴上方,则4030条直线AP1,AP2,…,AP4030的斜率乘积为-2-2015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知△ABC的三个内角A、B、C所对的边长分别为a、b、c,若a2-a-$\sqrt{3}$b-$\sqrt{3}$c=0,a+$\sqrt{3}$b-$\sqrt{3}$c+2=0,则△ABC中最大角的余弦值为-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若椭圆上的点到焦点的距离的最小值为5,最大值为15,则椭圆的短轴长为10$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(2x+φ)在x=$\frac{π}{6}$处取得极大值,则函数y=f($\frac{π}{4}$+x)的图象(  )
A.关于点($\frac{π}{6}$,0)对称B.关于点($\frac{π}{3}$,0)对称
C.关于直线x=$\frac{π}{6}$对称D.关于直线x=$\frac{π}{3}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=ex,g(x)=x+1,则关于f(x),g(x)的语句为假命题的是(  )
A.?x∈R,f(x)>g(x)B.?x1,x2∈R,f(x1)<g(x2
C.?x0∈R,f(x0)=g(x0D.?x0∈R,使得?x∈R,f(x0)-g(x0)≤f(x)-g(x)

查看答案和解析>>

同步练习册答案