精英家教网 > 高中数学 > 题目详情
20.已知△ABC的三个内角A、B、C所对的边长分别为a、b、c,若a2-a-$\sqrt{3}$b-$\sqrt{3}$c=0,a+$\sqrt{3}$b-$\sqrt{3}$c+2=0,则△ABC中最大角的余弦值为-$\frac{\sqrt{3}}{3}$.

分析 分别将两式相加减得出a与b,a与c的关系,使用作差法判断最大边,利用余弦定理解出cosC.

解答 解:∵a2-a-$\sqrt{3}$b-$\sqrt{3}$c=0,a+$\sqrt{3}$b-$\sqrt{3}$c+2=0,
两式相加得:a2-2$\sqrt{3}c$+2=0,∴c=$\frac{{a}^{2}+2}{2\sqrt{3}}$.
两式相减得:a2-2a-2$\sqrt{3}b$-2=0,∴b=$\frac{{a}^{2}-2a-2}{2\sqrt{3}}$.
显然c>b.
由b=$\frac{{a}^{2}-2a-2}{2\sqrt{3}}$>0得a2-2a-2>0,解得a>1+$\sqrt{3}$或a$<1-\sqrt{3}$(舍).
∴c-a=$\frac{{a}^{2}+2}{2\sqrt{3}}$-a=$\frac{(a-\sqrt{3})^{2}-1}{2\sqrt{3}}$>0.
∴c>a.
∴△ABC中,C为最大角.
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{{a}^{2}+(\frac{{a}^{2}-2a-2}{2\sqrt{3}})^{2}-(\frac{{a}^{2}+2}{2\sqrt{3}})^{2}}{2a•\frac{{a}^{2}-2a-2}{2\sqrt{3}}}$=$\frac{\frac{-{a}^{3}+2{a}^{2}+2a}{3}}{\frac{{a}^{3}-2{a}^{2}-2a}{\sqrt{3}}}$=-$\frac{\sqrt{3}}{3}$.
故答案为:-$\frac{\sqrt{3}}{3}$.

点评 本题主要考查余弦定理的应用,不等式的解法,根据正弦定理判断最大边为c是解题的关键,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线为$\sqrt{3}$x-y=0,它的一个焦点在抛物线y2=4x的准线上.
(Ⅰ)求此双曲线方程;
(Ⅱ)求以抛物线焦点为球心,且与双曲线渐近线相切的球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC外,分别以AC、BC、AB为边作正方形,得到三个正方形的面积依次为S1、S2、S3,若S1+S2=S3=8,则△ABC的面积最大值是(  )
A.2B.$\sqrt{2}$C.4D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆具有如下性质:若椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),则椭圆在其上一点A(x0,y0)处的切线方程为$\frac{{{x_0}x}}{a^2}+\frac{{{y_0}y}}{b^2}$=1,试运用该性质解决以下问题:椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),其焦距为2,且过点$(1,\frac{{\sqrt{2}}}{2})$.点B为C1在第一象限中的任意一点,过B作C1的切线l,l分别与x轴和y轴的正半轴交于C,D两点,则△OCD面积的最小值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点和一个顶点在圆x2+y2=4上.
(1)求椭圆的方程;
(2)已知点P(-3,2),若斜率为1的直线l与椭圆G相交于A、B两点,试探讨以AB为底边的等腰三角形ABP是否存在?若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,A,B为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个顶点,过椭圆的右焦点F作x轴的垂线,与其交于点C,若AB∥OC(O为坐标原点),则直线AB的斜率为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图是60名学生参加数学竞赛的成绩(均为整数)的频率分布直方图,估计这次数学竞赛的及格率是(  )
A.75%B.25%C.15%D.40%

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow a=(1,t),\overrightarrow b=(t,9)$,若$\overrightarrow a∥\overrightarrow b$,则t=±3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知双曲线$\frac{x^2}{3}-{y^2}=1$的左右焦点分别为F1,F2,P为双曲线右支上一点,点Q的坐标为(-2,3),则|PQ|+|PF1|的最小值为5+$2\sqrt{3}$.

查看答案和解析>>

同步练习册答案