精英家教网 > 高中数学 > 题目详情
11.在△ABC外,分别以AC、BC、AB为边作正方形,得到三个正方形的面积依次为S1、S2、S3,若S1+S2=S3=8,则△ABC的面积最大值是(  )
A.2B.$\sqrt{2}$C.4D.$\frac{\sqrt{2}}{2}$

分析 由题意可得:a2+b2=c2=8,可得C=90°,于是S△ABC=$\frac{1}{2}ab$,再利用基本不等式的性质即可得出.

解答 解:由题意可得:a2+b2=c2=8,
∴C=90°,△ABC是直角三角形,
∴S△ABC=$\frac{1}{2}ab$≤$\frac{1}{2}×\frac{{a}^{2}+{b}^{2}}{2}$=2,当且仅当a=b=2时取等号.
故选:A.

点评 本题考查了勾股定理的逆定理、三角形面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.求适合下列条件的直线的方程:
(1)过点(2,1)且平行于直线x=-3;
(2)过点(-1,0)且垂直于直线x+2y-1=0;
(3)过点(2,-3)且平行于过两点(1,2),(-4,5)的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知⊙C1:(x+$\sqrt{6}$)2+y2=32及点C2($\sqrt{6}$,0),在⊙C1上任取一点P,连结C2P,作线段C2P的中垂线交直线C1P于点M.
(1)当P在⊙C1上运动时,求点M的轨迹方程;
(2)设N为直线l:x=4上一点,O为坐标原点,且OM⊥ON,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的长轴长为4,离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)已知点A(a,0),B(0,b),直线l交椭圆C于P,Q两点(点A,B位于直线l的两侧)
(i)若直线l过坐标原点O,设直线AP,AQ,BP,BQ的斜率分别为k1,k2,k3,k4,求证:k1k2+k3k4为定值;
(ii)若直线l的斜率为$\frac{{\sqrt{3}}}{2}$,求四边形APBQ的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义在区间(0,+∞)上的函数f(x)使不等式2f(x)<xf′(x)<3f(x)恒成立,其中f′(x)为f(x)的导数,则(  )
A.8<$\frac{f(2)}{f(1)}$<16B.4<$\frac{f(2)}{f(1)}$<8C.3<$\frac{f(2)}{f(1)}$<4D.2<$\frac{f(2)}{f(1)}$<3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其左、右焦点分别为F1(-c,0),F2(c,0)(c>0).
(Ⅰ)若c=2,且F2关于直线y=$\frac{12}{5}$x+$\frac{5}{6}$的对称点在椭圆E上,求椭圆E的方程;
(Ⅱ)如图所示,若椭圆E的内接平行四边形的一组对边分别经过它的两个焦点,试求这个平行四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知曲线C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0,y≤0)的离心率e=$\frac{\sqrt{6}}{3}$,且经过点G(1,-$\frac{\sqrt{6}}{3}$),曲线C2:x2=2y,过曲线C1上一点P作C2的两条切线,切点分别为A,B.
(Ⅰ)求曲线C1的方程;
(Ⅱ)求△PAB面积的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知△ABC的三个内角A、B、C所对的边长分别为a、b、c,若a2-a-$\sqrt{3}$b-$\sqrt{3}$c=0,a+$\sqrt{3}$b-$\sqrt{3}$c+2=0,则△ABC中最大角的余弦值为-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在四边形ABCD中,AB=6,BD=3$\sqrt{3}$,BC=4,∠ADB=∠CBD,A=60°,则△BCD的面积为6$\sqrt{3}$.

查看答案和解析>>

同步练习册答案