精英家教网 > 高中数学 > 题目详情
6.定义在区间(0,+∞)上的函数f(x)使不等式2f(x)<xf′(x)<3f(x)恒成立,其中f′(x)为f(x)的导数,则(  )
A.8<$\frac{f(2)}{f(1)}$<16B.4<$\frac{f(2)}{f(1)}$<8C.3<$\frac{f(2)}{f(1)}$<4D.2<$\frac{f(2)}{f(1)}$<3

分析 令g(x)=g(x)=$\frac{f(x)}{{x}^{3}}$,h(x)=$\frac{f(x)}{{x}^{2}}$,求出g(x),h(x)的导数,得到函数g(x),h(x)的单调性,可得g(2)<g(1),h(2)>h(1),由f(1)>0,即可得到4<$\frac{f(2)}{f(1)}$<8.

解答 解:令g(x)=$\frac{f(x)}{{x}^{3}}$,
则g′(x)=$\frac{f′(x)•{x}^{3}-3{x}^{2}f(x)}{{x}^{6}}$=$\frac{xf′(x)-3f(x)}{{x}^{4}}$,
∵xf′(x)<3f(x),即xf′(x)-3f(x)<0,
∴g′(x)<0在(0,+∞)恒成立,
即有g(x)在(0,+∞)递减,可得
g(2)<g(1),即$\frac{f(2)}{8}$<$\frac{f(1)}{1}$,
由2f(x)<3f(x),可得f(x)>0,则$\frac{f(2)}{f(1)}$<8;
令h(x)=$\frac{f(x)}{{x}^{2}}$,h′(x)=$\frac{f′(x)•{x}^{2}-2xf(x)}{{x}^{4}}$=$\frac{xf′(x)-2f(x)}{{x}^{3}}$,
∵xf′(x)>2f(x),即xf′(x)-2f(x)>0,
∴h′(x)>0在(0,+∞)恒成立,
即有h(x)在(0,+∞)递增,可得
h(2)>h(1),即$\frac{f(2)}{4}$>f(1),则$\frac{f(2)}{f(1)}$>4.
即有4<$\frac{f(2)}{f(1)}$<8.
故选:B.

点评 本题考查了函数的单调性问题,考查导数的应用,构造g(x)=$\frac{f(x)}{{x}^{3}}$,h(x)=$\frac{f(x)}{{x}^{2}}$,求出g(x)和h(x)的导数,得到函数g(x)和h(x)的单调性是解题的关键,本题是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=Asin(ωx+φ)+B(其中A>0,ω>0,|φ|<$\frac{π}{2}$),且如图所示的函数g(x)的图象是由f(x)的图象向下平移$\frac{5}{2}$个单位所得.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)当x∈[-$\frac{π}{12}$,$\frac{2π}{3}$]时,求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆x2+y2=R2过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的右焦点F,且与双曲线在第一,三象限的交点分别为M,N,若∠MNF=$\frac{π}{12}$时,则该双曲线的渐近线方程为(  )
A.y=$±\frac{\sqrt{3}}{3}$xB.y=$±\sqrt{3}$xC.y=±xD.y=±2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点A(2,1)为椭圆G:x2+2y2=m上的一点.
(Ⅰ)求椭圆G的焦点坐标;
(Ⅱ)若椭圆G上的B,C两点满足2k1k2=-1(其中k1,k2分别为直线AB,AC的斜率).证明:B,C,O三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,且以坐标原点为圆心,椭圆的短半轴长为半径的圆与直线$x-y+\sqrt{2}=0$相切.
(1)求椭圆C的标准方程;
(2)若一条不过原点的直线l与椭圆相交于A,B两点,设直线OA,l,OB的斜率分别为k1,k,k2,且k1,k,k2恰好构成等比数列.求|OA|2+|OB|2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC外,分别以AC、BC、AB为边作正方形,得到三个正方形的面积依次为S1、S2、S3,若S1+S2=S3=8,则△ABC的面积最大值是(  )
A.2B.$\sqrt{2}$C.4D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知中心在原点,焦点在y轴上的椭圆C,其上一点P到两个焦点F1,F2的距离之和为4,离心率为$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆C的方程;
(2)若直线y=kx+1与曲线C交于A,B两点,求△AOB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点和一个顶点在圆x2+y2=4上.
(1)求椭圆的方程;
(2)已知点P(-3,2),若斜率为1的直线l与椭圆G相交于A、B两点,试探讨以AB为底边的等腰三角形ABP是否存在?若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=-cos2x-8sinx+9.则函数f(x)的最小值为(  )
A.2B.0C.18D.-2

查看答案和解析>>

同步练习册答案