1£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬ÇÒÒÔ×ø±êÔ­µãΪԲÐÄ£¬ÍÖÔ²µÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²ÓëÖ±Ïß$x-y+\sqrt{2}=0$ÏàÇУ®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÈôÒ»Ìõ²»¹ýÔ­µãµÄÖ±ÏßlÓëÍÖÔ²ÏཻÓÚA£¬BÁ½µã£¬ÉèÖ±ÏßOA£¬l£¬OBµÄбÂÊ·Ö±ðΪk1£¬k£¬k2£¬ÇÒk1£¬k£¬k2Ç¡ºÃ¹¹³ÉµÈ±ÈÊýÁУ®Çó|OA|2+|OB|2µÄÖµ£®

·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬ÒÔ×ø±êÔ­µãΪԲÐÄ£¬ÍÖÔ²µÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²ÓëÖ±Ïß$x-y+\sqrt{2}=0$ÏàÇУ¬Çó³öa£¬b£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬´úÈëÍÖÔ²·½³Ì£¬µÃ£¨1+4k2£©x2+8kmx+4m2-4=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢¸ùµÄÅбðʽ¡¢µÈ±ÈÊýÁС¢ÍÖÔ²ÐÔÖÊ£¬½áºÏÒÑÌñÖªÌõ¼þÄÜÇó³ö|OA|2+|OB|2µÄÖµ£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬
¡àÓÉÌâÒâÖªe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬¡àe2=$\frac{{c}^{2}}{{a}^{2}}=\frac{\sqrt{{a}^{2}-{b}^{2}}}{{a}^{2}}$=$\frac{3}{4}$£¬
ÕûÀí£¬µÃa2=4b2£¬¡àa=2b£¬
ÓÖ¡ßÒÔ×ø±êÔ­µãΪԲÐÄ£¬ÍÖÔ²µÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²ÓëÖ±Ïß$x-y+\sqrt{2}=0$ÏàÇУ¬
¡àb=$\frac{\sqrt{2}}{\sqrt{1+1}}$=1£¬¡àa=2£¬
¹ÊÍÖÔ²CµÄ·½³ÌΪ£º$\frac{{x}^{2}}{4}+{y}^{2}$=1£®
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉÖ±ÏßlµÄ·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÏûÈ¥yµÃ£º£¨1+4k2£©x2+8kmx+4m2-4=0£¬
¡àx1+x2=-$\frac{8km}{1+4{k}^{2}}$£¬x1x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$£¬ÇÒ¡÷=16£¨1+4k2-m2£©£¾0£¬
¡ßk1¡¢k¡¢k2Ç¡ºÃ¹¹³ÉµÈ±ÈÊýÁУ®
¡àk2=k1k2=$\frac{£¨k{x}_{1}+m£©£¨k{x}_{2}+m£©}{{x}_{1}{x}_{2}}$£¬
¡à-4k2m2+m2=0£¬
¡àk=¡À$\frac{1}{2}$£¬
´Ëʱ¡÷=16£¨2-m2£©£¾0£¬¼´m¡Ê£¨-$\sqrt{2}$£¬$\sqrt{2}$£©£¬
¡àx1+x2=¡À2m£¬x1x2=2m2-2
¡à|OA|2+|OB|2=${{x}_{1}}^{2}+{{y}_{1}}^{2}+{{x}_{2}}^{2}+{{y}_{2}}^{2}$=$\frac{3}{4}$[£¨x1+x2£©2-2x1x2]+2=5£¬
¡à|OA|2+|OB|2ÊǶ¨ÖµÎª5£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²é´úÊýºÍΪ¶¨ÖµµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâΤ´ï¶¨Àí¡¢¸ùµÄÅбðʽ¡¢µÈ±ÈÊýÁС¢ÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®£¨1-x+x2£©£¨x+$\frac{1}{x}$£©5µÄÕ¹¿ªÊ½ÖÐx3µÄϵÊýΪ15£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬A£¨-2£¬0£©£¬B£¨2£¬0£©£¬µÚÒ»ÏóÏÞÄÚµãCÂú×ã¡ÏACB=60¡ã£¬ÇÒ¡÷ABCµÄÃæ»ýΪ$\sqrt{3}$£®Ë«ÇúÏß§¤ÒÔA¡¢BΪ½¹µã£¬¾­¹ýµãC£®
£¨1£©ÇóË«ÇúÏߵķ½³Ì£»
£¨2£©Ö±Ïßl¹ýµãBÓëË«ÇúÏßÓÒÖ§½»ÓÚM¡¢NÁ½µã£¬ÇÒ|AM|¡¢|MN|¡¢|AN|³ÉµÈ²îÊýÁУ¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÍÖÔ²C1£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾0£¬b£¾0£©µÄ³¤Ö᳤µÈÓÚÔ²C2£ºx2+y2=4µÄÖ±¾¶£¬ÇÒC1µÄÀëÐÄÂʵÈÓÚ$\frac{1}{2}$£®Ö±Ïßl1ºÍl2ÊǹýµãM£¨1£¬0£©»¥Ïà´¹Ö±µÄÁ½ÌõÖ±Ïߣ¬l1½»C1ÓÚA£¬BÁ½µã£¬l2½»C2ÓÚC£¬DÁ½µã£®
£¨I£©ÇóC1µÄ±ê×¼·½³Ì£»
£¨¢ò£©µ±ËıßÐÎABCDµÄÃæ»ýΪ$\frac{12}{7}\sqrt{14}$ʱ£¬ÇóÖ±Ïßl1µÄбÂÊk£¨k£¾0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÉèÍÖÔ²EµÄ·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬µãOÎª×ø±êÔ­µã£¬µãAµÄ×ø±êΪ£¨a£¬0£©£¬µãBµÄ×ø±êΪ£¨0£¬b£©£¬µãMÔÚÏß¶ÎABÉÏ£¬Âú×ã|BM|=2|MA|£¬Ö±ÏßOMµÄбÂÊΪ$\frac{\sqrt{5}}{10}$£®ÔòEµÄÀëÐÄÂÊe=$\frac{2\sqrt{5}}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®¶¨ÒåÔÚÇø¼ä£¨0£¬+¡Þ£©Éϵĺ¯Êýf£¨x£©Ê¹²»µÈʽ2f£¨x£©£¼xf¡ä£¨x£©£¼3f£¨x£©ºã³ÉÁ¢£¬ÆäÖÐf¡ä£¨x£©Îªf£¨x£©µÄµ¼Êý£¬Ôò£¨¡¡¡¡£©
A£®8£¼$\frac{f£¨2£©}{f£¨1£©}$£¼16B£®4£¼$\frac{f£¨2£©}{f£¨1£©}$£¼8C£®3£¼$\frac{f£¨2£©}{f£¨1£©}$£¼4D£®2£¼$\frac{f£¨2£©}{f£¨1£©}$£¼3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÉèÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬É϶¥µãΪA£¬¹ýµãAÓëAF2´¹Ö±µÄÖ±Ïß½»xÖḺ°ëÖáÓÚµãQ£¬ÇÒF1Ç¡ÊÇQF2µÄÖе㣮Èô¹ýA¡¢Q¡¢F2ÈýµãµÄԲǡºÃÓëÖ±Ïßl£ºx-$\sqrt{3}$y-3=0ÏàÇУ®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßl1£ºy=x+2ÓëÍÖÔ²C½»ÓÚG¡¢HÁ½µã£®ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãP£¨m£¬0£©£¬Ê¹µÃÒÔPG£¬PHΪÁÚ±ßµÄÆ½ÐÐËıßÐÎÊÇÁâÐΣ®Èç¹û´æÔÚ£¬Çó³ömµÄȡֵ·¶Î§£¬Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬³¤ÖáABÉÏ2016¸öµÈ·Öµã´Ó×óµ½ÓÒÒÀ´ÎΪµãM1£¬M2£¬¡­£¬M2015£¬¹ýM1µã×÷бÂÊΪk£¨k¡Ù0£©µÄÖ±Ïߣ¬½»ÍÖÔ²CÓÚP1£¬P2Á½µã£¬P1µãÔÚxÖáÉÏ·½£»¹ýM2µã×÷бÂÊΪk£¨k¡Ù0£©µÄÖ±Ïߣ¬½»ÍÖÔ²CÓÚP3£¬P4Á½µã£¬P3µãÔÚxÖáÉÏ·½£»ÒÔ´ËÀàÍÆ£¬¹ýM2015µã×÷бÂÊΪk£¨k¡Ù0£©µÄÖ±Ïߣ¬½»ÍÖÔ²CÓÚP4029£¬P4030Á½µã£¬P4029µãÔÚxÖáÉÏ·½£¬Ôò4030ÌõÖ±ÏßAP1£¬AP2£¬¡­£¬AP4030µÄбÂʳ˻ýΪ-2-2015£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÔÚÈý¸öÊý$\frac{1}{2}£¬{2^{-\frac{1}{2}}}£®{log_3}$2ÖУ¬×îСµÄÊýÊÇ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸