精英家教网 > 高中数学 > 题目详情
17.已知圆x2+y2=R2过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的右焦点F,且与双曲线在第一,三象限的交点分别为M,N,若∠MNF=$\frac{π}{12}$时,则该双曲线的渐近线方程为(  )
A.y=$±\frac{\sqrt{3}}{3}$xB.y=$±\sqrt{3}$xC.y=±xD.y=±2x

分析 由对称性可得MN过原点O,可得MF⊥NF,运用正切函数的定义和双曲线的定义,求得MF,NF,再由勾股定理和渐近线方程即可得到所求.

解答 解:由对称性可得MN过原点O,可得
MF⊥NF,即有tan∠MNF=$\frac{|MF|}{|NF|}$=tan$\frac{π}{12}$=2-$\sqrt{3}$,
由双曲线的定义可得|NF|-|MF|=|MF'|-|MF|=2a,
解得|MF|=($\sqrt{3}$-1)a,|NF|=($\sqrt{3}$+1)a,
在直角三角形MFF'中,由勾股定理可得,
4c2=($\sqrt{3}$-1)2a2+($\sqrt{3}$+1)2a2
即为c2=2a2,即有b2=c2-a2=a2
则双曲线的渐近线方程为y=±$\frac{b}{a}$x,
即y=±x.
故选:C.

点评 本题考查双曲线的渐近线方程求法,注意运用双曲线的定义和对称性,以及直径所对的圆周角为直角,正切函数的定义,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知$f(x)=a{x^2}+\frac{b}{x}$(a>0,b>0),曲线y=f(x)在点(1,f(1))处的切线经过点$(\frac{3}{2},\frac{1}{2})$,则$\frac{1}{a}+\frac{1}{b}$有(  )
A.最小值9B.最大值9C.最小值4D.最大值4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=-x1nx的图象在点(1,f(1))处的切线的倾斜角为(  )
A.-1B.$\frac{π}{4}$C.-$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1和$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=-1(a>0,b>0)的离心率分别为e1,e2,且连接两条双曲线顶点所得四边形的面积为S1,连接两条双曲线的焦点所得四边形的面积为S2,试探究:
(1)e1与e2之间的关系式;
(2)$\frac{{S}_{1}}{{S}_{2}}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,A(-2,0),B(2,0),第一象限内点C满足∠ACB=60°,且△ABC的面积为$\sqrt{3}$.双曲线Г以A、B为焦点,经过点C.
(1)求双曲线的方程;
(2)直线l过点B与双曲线右支交于M、N两点,且|AM|、|MN|、|AN|成等差数列,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知⊙C1:(x+$\sqrt{6}$)2+y2=32及点C2($\sqrt{6}$,0),在⊙C1上任取一点P,连结C2P,作线段C2P的中垂线交直线C1P于点M.
(1)当P在⊙C1上运动时,求点M的轨迹方程;
(2)设N为直线l:x=4上一点,O为坐标原点,且OM⊥ON,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>0,b>0)的长轴长等于圆C2:x2+y2=4的直径,且C1的离心率等于$\frac{1}{2}$.直线l1和l2是过点M(1,0)互相垂直的两条直线,l1交C1于A,B两点,l2交C2于C,D两点.
(I)求C1的标准方程;
(Ⅱ)当四边形ABCD的面积为$\frac{12}{7}\sqrt{14}$时,求直线l1的斜率k(k>0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义在区间(0,+∞)上的函数f(x)使不等式2f(x)<xf′(x)<3f(x)恒成立,其中f′(x)为f(x)的导数,则(  )
A.8<$\frac{f(2)}{f(1)}$<16B.4<$\frac{f(2)}{f(1)}$<8C.3<$\frac{f(2)}{f(1)}$<4D.2<$\frac{f(2)}{f(1)}$<3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若椭圆上的点到焦点的距离的最小值为5,最大值为15,则椭圆的短轴长为10$\sqrt{3}$.

查看答案和解析>>

同步练习册答案