精英家教网 > 高中数学 > 题目详情
8.已知椭圆具有如下性质:若椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),则椭圆在其上一点A(x0,y0)处的切线方程为$\frac{{{x_0}x}}{a^2}+\frac{{{y_0}y}}{b^2}$=1,试运用该性质解决以下问题:椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),其焦距为2,且过点$(1,\frac{{\sqrt{2}}}{2})$.点B为C1在第一象限中的任意一点,过B作C1的切线l,l分别与x轴和y轴的正半轴交于C,D两点,则△OCD面积的最小值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 依题意得:椭圆的焦点为F1(-1,0),F2(1,0),可得c=1,代入点$(1,\frac{{\sqrt{2}}}{2})$,计算即可求出a,b,从而可求椭圆C1的方程;设B(x2,y2),求得椭圆C1在点B处的切线方程,分别令x=0,y=0,求得截距,由三角形的面积公式,再结合基本不等式,即可求△OCD面积的最小值.

解答 解:由题意可得2c=2,即c=1,a2-b2=1,
代入点$(1,\frac{{\sqrt{2}}}{2})$,可得$\frac{1}{{a}^{2}}$+$\frac{1}{2{b}^{2}}$=1,
解得a=$\sqrt{2}$,b=1,
即有椭圆的方程为$\frac{{x}^{2}}{2}$+y2=1,
设B(x2,y2),
则椭圆C1在点B处的切线方程为$\frac{{x}_{2}}{2}$x+y2y=1
令x=0,yD=$\frac{1}{{y}_{2}}$,令y=0,可得xC=$\frac{2}{{x}_{2}}$,
所以S△OCD=$\frac{1}{2}$•$\frac{1}{{y}_{2}}$•$\frac{2}{{x}_{2}}$=$\frac{1}{{x}_{2}{y}_{2}}$,
又点B在椭圆的第一象限上,
所以x2,y2>0,$\frac{{{x}_{2}}^{2}}{2}$+y22=1,
即有$\frac{1}{{x}_{2}{y}_{2}}$=$\frac{\frac{{{x}_{2}}^{2}}{2}+{{y}_{2}}^{2}}{{x}_{2}{y}_{2}}$=$\frac{{x}_{2}}{2{y}_{2}}$+$\frac{{y}_{2}}{{x}_{2}}$≥2$\sqrt{\frac{{x}_{2}}{2{y}_{2}}•\frac{{y}_{2}}{{x}_{2}}}$=$\sqrt{2}$,
S△OCD≥$\sqrt{2}$,当且仅当$\frac{{{x}_{2}}^{2}}{2}$=y22=$\frac{1}{2}$,
所以当B(1,$\frac{\sqrt{2}}{2}$)时,三角形OCD的面积的最小值为$\sqrt{2}$.
故选:B.

点评 本题考查椭圆的方程的求法,考查三角形面积的最值的求法,考查直线与椭圆的位置关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在平行四边形ABCD中,若($\overrightarrow{AB}$+$\overrightarrow{AD}$)•($\overrightarrow{AB}$-$\overrightarrow{AD}$)=0,则有(  )
A.$\overrightarrow{AB}$+$\overrightarrow{AD}$=0B.$\overrightarrow{AB}$-$\overrightarrow{AD}$=0C.ABCD为矩形D.ABCD为菱形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的长轴长为4,离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)已知点A(a,0),B(0,b),直线l交椭圆C于P,Q两点(点A,B位于直线l的两侧)
(i)若直线l过坐标原点O,设直线AP,AQ,BP,BQ的斜率分别为k1,k2,k3,k4,求证:k1k2+k3k4为定值;
(ii)若直线l的斜率为$\frac{{\sqrt{3}}}{2}$,求四边形APBQ的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其左、右焦点分别为F1(-c,0),F2(c,0)(c>0).
(Ⅰ)若c=2,且F2关于直线y=$\frac{12}{5}$x+$\frac{5}{6}$的对称点在椭圆E上,求椭圆E的方程;
(Ⅱ)如图所示,若椭圆E的内接平行四边形的一组对边分别经过它的两个焦点,试求这个平行四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知曲线C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0,y≤0)的离心率e=$\frac{\sqrt{6}}{3}$,且经过点G(1,-$\frac{\sqrt{6}}{3}$),曲线C2:x2=2y,过曲线C1上一点P作C2的两条切线,切点分别为A,B.
(Ⅰ)求曲线C1的方程;
(Ⅱ)求△PAB面积的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若一个椭圆长轴的长度,短轴的长度和焦距依次成等差数列,则该椭圆的离心率是(  )
A.e=-1B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知△ABC的三个内角A、B、C所对的边长分别为a、b、c,若a2-a-$\sqrt{3}$b-$\sqrt{3}$c=0,a+$\sqrt{3}$b-$\sqrt{3}$c+2=0,则△ABC中最大角的余弦值为-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在平面内,点A,B,C分别在直线l1、l2、l3上,且l1∥l2∥l3(l2在l1与l3之间),l1与l2间距离为a,l2与l3之间距离为b,且$\overrightarrow{AB}$2=$\overrightarrow{AB}$•$\overrightarrow{AC}$,则△ABC的面积最小值为(  )
A.$\frac{a+b}{2}$B.abC.2$\sqrt{ab}$D.$\frac{{a}^{2}+{b}^{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.给出下列五个结论:
①回归直线y=bx+a一定过样本中心点($\overline{x}$,$\overline{y}$);
②命题“?x∈R,均有x2-3x-2>0”的否定是:“?x0∈R,使得x02-3x0-2≤0”;
③将函数y=sinx+$\sqrt{3}$cosx的图象向右平移$\frac{π}{6}$后,所得到的图象关于y轴对称;
④?m∈R,使f(x)=(m-1)•x${\;}^{{m}^{2}-4m+3}$是幂函数,且在(0,+∞)上递增;
⑤函数f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{{2}^{x}•|lo{g}_{2}x|-1,x>0}\end{array}\right.$恰好有三个零点;
其中正确的结论为(  )
A.①②④B.①②⑤C.④⑤D.②③⑤

查看答案和解析>>

同步练习册答案