精英家教网 > 高中数学 > 题目详情
15.在平行四边形ABCD中,若($\overrightarrow{AB}$+$\overrightarrow{AD}$)•($\overrightarrow{AB}$-$\overrightarrow{AD}$)=0,则有(  )
A.$\overrightarrow{AB}$+$\overrightarrow{AD}$=0B.$\overrightarrow{AB}$-$\overrightarrow{AD}$=0C.ABCD为矩形D.ABCD为菱形

分析 由平方差公式,结合向量的平方即为模的平方,即可判断四边形ABCD的形状.

解答 解:由($\overrightarrow{AB}$+$\overrightarrow{AD}$)•($\overrightarrow{AB}$-$\overrightarrow{AD}$)=0,
可得$\overrightarrow{AB}$2-$\overrightarrow{AD}$2=0,即为|$\overrightarrow{AB}$|=|$\overrightarrow{AD}$|,
由平行四边形ABCD,可得四边形ABCD为菱形.
故选:D.

点评 本题考查向量的数量积的性质:向量的平方即为模的平方,考查四边形的形状的判断,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设条件P:存在常数M>0,使|f(x)|≤M|x|对一切实数x恒成立.现给出以下函数,其中满足条件P的是(1),(2)
(1)f(x)=$\frac{x}{{{x^2}+x+1}}$;
(2)f(x)是定义域为R的奇函数,且对任意的x1,x2,都有|f(x1)-f(x2)|≤2|x1-x2|成立.
(3)f(x)=$\left\{\begin{array}{l}{x•{2}^{x}(x≤0)}\\{\frac{sinx}{x}(x>0)}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.复数z1=1+icosθ,z2=sinθ-i,则|z1-z2|的最大值为(  )
A.3-2$\sqrt{2}$B.$\sqrt{2}-1$C.3+2$\sqrt{2}$D.$\sqrt{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知在△ABC中,角A、B、C所对的边为a、b、c,若向量$\overrightarrow{m}$=(cosB,sinC),$\overrightarrow{n}$=(cosC,-sinB),且$\overrightarrow{m}•\overrightarrow{n}$=-$\frac{\sqrt{2}}{2}$.
(1)求∠A的大小;
(2)若边a=$\sqrt{2}$且cosB=$\frac{3}{5}$,求△ABC的边c的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知(1+2x)n=a0+a1(x-$\frac{1}{2}$)+a2(x-$\frac{1}{2}$)2+…+an(x-$\frac{1}{2}$)n(其中n∈N*),若a1+a2+…+an=240,则x3的系数是(  )
A.16B.32C.31D.36

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设F(-c,0)是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,过F作直线l与双曲线左、右两支分别交于点A、B,其中B点的横坐标为$\frac{c}{2}$,若$\overrightarrow{FA}$=$λ\overrightarrow{AB}$,且λ∈[$\frac{2}{3}$,$\frac{3}{4}$],则双曲线的离心率e的取值范围是[$\sqrt{7}$,$\sqrt{10}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线为$\sqrt{3}$x-y=0,它的一个焦点在抛物线y2=4x的准线上.
(Ⅰ)求此双曲线方程;
(Ⅱ)求以抛物线焦点为球心,且与双曲线渐近线相切的球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知F1,F2是椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)左右焦点,过F1的直线交椭圆于C,D两点,△CDF2的周长为8,椭圆的离心率为$\frac{1}{2}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若直线l与椭圆E交于A,B且$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,求证原点O到直线l的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆具有如下性质:若椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),则椭圆在其上一点A(x0,y0)处的切线方程为$\frac{{{x_0}x}}{a^2}+\frac{{{y_0}y}}{b^2}$=1,试运用该性质解决以下问题:椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),其焦距为2,且过点$(1,\frac{{\sqrt{2}}}{2})$.点B为C1在第一象限中的任意一点,过B作C1的切线l,l分别与x轴和y轴的正半轴交于C,D两点,则△OCD面积的最小值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案