7£®ÒÑÖªF1£¬F2ÊÇÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©×óÓÒ½¹µã£¬¹ýF1µÄÖ±Ïß½»ÍÖÔ²ÓÚC£¬DÁ½µã£¬¡÷CDF2µÄÖܳ¤Îª8£¬ÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{1}{2}$£®
£¨¢ñ£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©ÈôÖ±ÏßlÓëÍÖÔ²E½»ÓÚA£¬BÇÒ$\overrightarrow{OA}$¡Í$\overrightarrow{OB}$£¬ÇóÖ¤Ô­µãOµ½Ö±ÏßlµÄ¾àÀëΪ¶¨Öµ£®

·ÖÎö £¨¢ñ£©ÓÉF1£¬F2ÊÇÍÖÔ²×óÓÒ½¹µã£¬¹ýF1µÄÖ±Ïß½»ÍÖÔ²ÓÚC£¬DÁ½µã£¬¡÷CDF2µÄÖܳ¤Îª8£¬ÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬Áгö·½³Ì×éÇó³öa£¬b£¬ÓÉ´ËÄÜÇó³öÍÖÔ²EµÄ·½³Ì£®
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬µ±Ö±ÏßABбÂʲ»´æÔÚʱ£¬ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ¿ÉÖªx1=x2£¬y1=-y2£¬ÓÉ$\overrightarrow{OA}¡Í\overrightarrow{OB}$£¬µÃx12-y12=0£¬´Ó¶øÇó³öÔ­µãOµ½Ö±ÏßlµÄ¾àÀëΪd=|x1|=$\frac{2\sqrt{21}}{7}$£»µ±Ö±ÏßABбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+m£¬´úÈëÍÖÔ²·½³Ì£¬µÃ£¨3+4k2£©x2+8kmx+4m2-12=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢µãµ½Ö±Ïß¾àÀ빫ʽ¡¢ÏòÁ¿ÊýÁ¿»ý£¬½áºÏÒÑÖªÌõ¼þÍÆµ¼³öµãOµ½Ö±ÏßABµÄ¾àÀëΪ¶¨Öµ£®

½â´ð ½â£º£¨¢ñ£©¡ßF1£¬F2ÊÇÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©×óÓÒ½¹µã£¬¹ýF1µÄÖ±Ïß½»ÍÖÔ²ÓÚC£¬DÁ½µã£¬
¡÷CDF2µÄÖܳ¤Îª8£¬ÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬
¡à$\left\{\begin{array}{l}{4a=8}\\{e=\frac{c}{a}=\frac{1}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃa=2£¬b=$\sqrt{3}$£¬
¡àÍÖÔ²EµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£®
Ö¤Ã÷£º£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
¢Ùµ±Ö±ÏßABбÂʲ»´æÔÚʱ£¬ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ¿ÉÖªx1=x2£¬y1=-y2£¬
¡ß$\overrightarrow{OA}¡Í\overrightarrow{OB}$£¬¡à$\overrightarrow{OA}•\overrightarrow{OB}$=0£¬
¡àx1x2+y1y2=0£¬¡àx12-y12=0
¡ß3x12+4y12=12£¬¡à|x1|=|y1|=$\frac{2\sqrt{21}}{7}$£¬
¡àÔ­µãOµ½Ö±ÏßlµÄ¾àÀëΪd=|x1|=$\frac{2\sqrt{21}}{7}$£®
¢Úµ±Ö±ÏßABбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+m£¬´úÈëÍÖÔ²·½³Ì£¬
ÏûÔª¿ÉµÃ£¨3+4k2£©x2+8kmx+4m2-12=0
¡àx1+x2=-$\frac{8km}{3+4{k}^{2}}$£¬x1x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$£¬y1y2=£¨kx1+m£©£¨kx2+m£©=k2x1x2+km£¨x1+x2£©+m2£¬
¡ß$\overrightarrow{OA}¡Í\overrightarrow{OB}$£¬¡à$\overrightarrow{OA}•\overrightarrow{OB}$=0£¬
¡àx1x2+y1y2=0£¬¡à£¨1+k2£©¡Á$\frac{4{m}^{2}-12}{3+4{k}^{2}}$-km¡Á$\frac{8km}{3+4{k}^{2}}$+m2=0
¡à7m2=12£¨k2+1£©
¡àÔ­µãOµ½Ö±ÏߵľàÀëΪd=$\frac{|m|}{\sqrt{{k}^{2}+1}}$=$\frac{|m|}{\sqrt{\frac{7{m}^{2}}{12}}}$=$\frac{2\sqrt{21}}{7}$£®
×ÛÉÏ£¬µãOµ½Ö±ÏßABµÄ¾àÀëΪ¶¨Öµ$\frac{2\sqrt{21}}{7}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éµãµ½Ö±ÏߵľàÀëµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâΤ´ï¶¨Àí¡¢µãµ½Ö±Ïß¾àÀ빫ʽ¡¢ÏòÁ¿ÊýÁ¿»ý¡¢ÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®tan$\frac{¦Ð}{8}$+tan$\frac{3¦Ð}{8}$µÄֵΪ2$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬Èô£¨$\overrightarrow{AB}$+$\overrightarrow{AD}$£©•£¨$\overrightarrow{AB}$-$\overrightarrow{AD}$£©=0£¬ÔòÓУ¨¡¡¡¡£©
A£®$\overrightarrow{AB}$+$\overrightarrow{AD}$=0B£®$\overrightarrow{AB}$-$\overrightarrow{AD}$=0C£®ABCDΪ¾ØÐÎD£®ABCDΪÁâÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑ֪˫ÇúÏßCµÄ¶¥µãÔÚxÖáÉÏ£¬Á½¶¥µã¼äµÄ¾àÀëÊÇ8£¬ÀëÐÄÂÊ$e=\frac{5}{4}$£®
£¨1£©ÇóË«ÇúÏßCµÄ±ê×¼·½³Ì£»
£¨2£©¹ýµãP£¨3£¬0£©ÇÒбÂÊΪkµÄÖ±ÏßÓëË«ÇúÏßCÓÐÇÒ½öÓÐÒ»¸ö¹«¹²µã£¬ÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÒÑÖª¡ÑC1£º£¨x+$\sqrt{6}$£©2+y2=32¼°µãC2£¨$\sqrt{6}$£¬0£©£¬ÔÚ¡ÑC1ÉÏÈÎȡһµãP£¬Á¬½áC2P£¬×÷Ïß¶ÎC2PµÄÖд¹Ïß½»Ö±ÏßC1PÓÚµãM£®
£¨1£©µ±PÔÚ¡ÑC1ÉÏÔ˶¯Ê±£¬ÇóµãMµÄ¹ì¼£·½³Ì£»
£¨2£©ÉèNΪֱÏßl£ºx=4ÉÏÒ»µã£¬OÎª×ø±êÔ­µã£¬ÇÒOM¡ÍON£¬Çó|MN|µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬¹ýµãP£¨2£¬4£©×÷Ô²O£ºx2+y2=20µÄÇÐÏßl£¬Ö±ÏßlÇ¡ºÃ¹ýÍÖÔ²CµÄÓÒ¶¥µãÓëÉ϶¥µã£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÈôÔ²OÉϵÄÒ»µãQµÄÇÐÏßl1½»ÍÖÔ²CÓÚA£¬BÁ½µã£¬ÊÔÈ·¶¨¡ÏAOBµÄ´óС£¬²¢¼ÓÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ³¤Ö᳤Ϊ4£¬ÀëÐÄÂÊΪ$\frac{1}{2}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÒÑÖªµãA£¨a£¬0£©£¬B£¨0£¬b£©£¬Ö±Ïßl½»ÍÖÔ²CÓÚP£¬QÁ½µã£¨µãA£¬BλÓÚÖ±ÏßlµÄÁ½²à£©
£¨i£©ÈôÖ±Ïßl¹ý×ø±êÔ­µãO£¬ÉèÖ±ÏßAP£¬AQ£¬BP£¬BQµÄбÂÊ·Ö±ðΪk1£¬k2£¬k3£¬k4£¬ÇóÖ¤£ºk1k2+k3k4Ϊ¶¨Öµ£»
£¨ii£©ÈôÖ±ÏßlµÄбÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬ÇóËıßÐÎAPBQµÄÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬Æä×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¨c£¾0£©£®
£¨¢ñ£©Èôc=2£¬ÇÒF2¹ØÓÚÖ±Ïßy=$\frac{12}{5}$x+$\frac{5}{6}$µÄ¶Ô³ÆµãÔÚÍÖÔ²EÉÏ£¬ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©ÈçͼËùʾ£¬ÈôÍÖÔ²EµÄÄÚ½ÓÆ½ÐÐËıßÐεÄÒ»×é¶Ô±ß·Ö±ð¾­¹ýËüµÄÁ½¸ö½¹µã£¬ÊÔÇóÕâ¸öƽÐÐËıßÐεÄÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÔÚÆ½ÃæÄÚ£¬µãA£¬B£¬C·Ö±ðÔÚÖ±Ïßl1¡¢l2¡¢l3ÉÏ£¬ÇÒl1¡Îl2¡Îl3£¨l2ÔÚl1Óël3Ö®¼ä£©£¬l1Óël2¼ä¾àÀëΪa£¬l2Óël3Ö®¼ä¾àÀëΪb£¬ÇÒ$\overrightarrow{AB}$2=$\overrightarrow{AB}$•$\overrightarrow{AC}$£¬Ôò¡÷ABCµÄÃæ»ý×îСֵΪ£¨¡¡¡¡£©
A£®$\frac{a+b}{2}$B£®abC£®2$\sqrt{ab}$D£®$\frac{{a}^{2}+{b}^{2}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸