精英家教网 > 高中数学 > 题目详情
13.若一个椭圆长轴的长度,短轴的长度和焦距依次成等差数列,则该椭圆的离心率是(  )
A.e=-1B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{1}{2}$

分析 设长轴为2a,短轴为2b,焦距为2c,运用等差数列的中项的性质可得a+c=2b,两边平方,结合a,b,c的关系和离心率公式,计算即可得到所求值.

解答 解:设长轴为2a,短轴为2b,焦距为2c,
由椭圆长轴的长度,短轴的长度和焦距依次成等差数列,
可得2a+2c=2×2b,
即a+c=2b⇒(a+c)2=4b2=4(a2-c2),
所以3a2-5c2=2ac,两边同除以a2
整理得5e2+2e-3=0,
解得e=$\frac{3}{5}$或e=-1(舍去),
故选:B.

点评 本题考查椭圆的离心率的求法,注意运用等差数列的中项的性质,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设F(-c,0)是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,过F作直线l与双曲线左、右两支分别交于点A、B,其中B点的横坐标为$\frac{c}{2}$,若$\overrightarrow{FA}$=$λ\overrightarrow{AB}$,且λ∈[$\frac{2}{3}$,$\frac{3}{4}$],则双曲线的离心率e的取值范围是[$\sqrt{7}$,$\sqrt{10}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,椭圆的上顶点为D,右焦点为F2,延长DF2交椭圆于E,且满足|DF2|=3|F2E|,椭圆的右焦点与抛物线y2=4x的焦点重合.
(1)试求椭圆的方程;
(2)过点F2的直线l和该椭圆交于A,B两点,点C在椭圆上,O为坐标原点,且满足$\overrightarrow{OC}=2\overrightarrow{OA}+3\overrightarrow{OB}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=l(a>b>0)的左右焦点分别为F1,F2,抛物线y2=4x与椭圆C有相同的焦点,点P为抛物线与椭圆C在第一象限的交点,且|PF2|=$\frac{5}{3}$.
(I)求椭圆C的方程;
(Ⅱ)过点F1作直线l与椭圆C交于A,B两点,设$\overrightarrow{A{F_1}}=λ\overrightarrow{{F_1}B}$.若λ∈[1,2],求△ABF2面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆具有如下性质:若椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),则椭圆在其上一点A(x0,y0)处的切线方程为$\frac{{{x_0}x}}{a^2}+\frac{{{y_0}y}}{b^2}$=1,试运用该性质解决以下问题:椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),其焦距为2,且过点$(1,\frac{{\sqrt{2}}}{2})$.点B为C1在第一象限中的任意一点,过B作C1的切线l,l分别与x轴和y轴的正半轴交于C,D两点,则△OCD面积的最小值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如图).
(1)体育成绩大于或等于70分的学生常被称为“体育良好”,已知该校高一年级有1000名学生,试估计高一全校中“体育良好”的学生人数;
(2)为分析学生平时的体育活动情况,现从体积成绩在[60,70)和[80,90)的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在[60,70)的概率;
(3)假设甲、乙、丙三人的体育成绩分别为a,b,c,且分别在[70,80),[80,90),[90,100]三组中,其中a,b,c∈N,当数据a,b,c的方差s2最小时,写出a,b,c的值.(结论不要求证明)
(注:s2=$\frac{1}{n}$[(x${\;}_{1}+\overline{x}$)2+(x2-$\overline{x}$)2+…+(x${\;}_{n}-\overline{x}$)2],其中$\overline{x}$为数据x1,x2,…,xn的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,A,B为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个顶点,过椭圆的右焦点F作x轴的垂线,与其交于点C,若AB∥OC(O为坐标原点),则直线AB的斜率为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=ln(1-$\frac{1}{x}$)的定义域(  )
A.(-∞,0)B.(0,1)C.(1,+∞)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知θ为第一象限的角,sinθ-2cosθ=-$\frac{2}{5}$,则sinθ+cosθ等于(  )
A.$\frac{9}{5}$B.$\frac{8}{5}$C.$\frac{7}{5}$D.$\frac{6}{5}$

查看答案和解析>>

同步练习册答案