精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=sin(2x+φ)在x=$\frac{π}{6}$处取得极大值,则函数y=f($\frac{π}{4}$+x)的图象(  )
A.关于点($\frac{π}{6}$,0)对称B.关于点($\frac{π}{3}$,0)对称
C.关于直线x=$\frac{π}{6}$对称D.关于直线x=$\frac{π}{3}$对称

分析 由条件求得φ的值,可得f(x)的解析式,从而得出f(x+$\frac{π}{4}$)的解析式,再利用正弦函数的图象的对称性,得出结论.

解答 解:函数f(x)=sin(2x+φ)的周期为π,在x=$\frac{π}{6}$处取得极大值,
则$\frac{π}{3}$+φ=2kπ+$\frac{π}{2}$,k∈Z,故可取φ=$\frac{π}{6}$,f(x)=sin(2x+$\frac{π}{6}$).
则函数y=f($\frac{π}{4}$+x)=sin($\frac{π}{2}$+2x+$\frac{π}{6}$)=cos(2x+$\frac{π}{6}$),
当x=$\frac{π}{6}$时,求得f($\frac{π}{4}$+x)=0,可得f($\frac{π}{4}$+x)的图象关于点($\frac{π}{6}$,0)对称,不关于直线x=$\frac{π}{6}$对称;
故A正确,C错误.
当x=$\frac{π}{3}$时,求得f($\frac{π}{4}$+x)=cos(2x+$\frac{π}{6}$)=-$\frac{\sqrt{3}}{2}$,故f($\frac{π}{4}$+x)的图象不关于点($\frac{π}{3}$,0)对称,
也不关于直线x=$\frac{π}{3}$对称,故B、D错误,
故选:A.

点评 本题主要考查正弦函数的最值,正弦函数的图象的对称性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知点A(2,1)为椭圆G:x2+2y2=m上的一点.
(Ⅰ)求椭圆G的焦点坐标;
(Ⅱ)若椭圆G上的B,C两点满足2k1k2=-1(其中k1,k2分别为直线AB,AC的斜率).证明:B,C,O三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点和一个顶点在圆x2+y2=4上.
(1)求椭圆的方程;
(2)已知点P(-3,2),若斜率为1的直线l与椭圆G相交于A、B两点,试探讨以AB为底边的等腰三角形ABP是否存在?若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图是60名学生参加数学竞赛的成绩(均为整数)的频率分布直方图,估计这次数学竞赛的及格率是(  )
A.75%B.25%C.15%D.40%

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若直线y=k(x+1)上存在点(x,y)满足约束条件$\left\{\begin{array}{l}{x-y+\sqrt{3}≥0}\\{\sqrt{3}x-y-\sqrt{3}≤0}\\{y≥\sqrt{3}}\\{\;}\end{array}\right.$,则直线y=k(x+1)的倾斜角的取值范围为$[{\frac{π}{6},\frac{π}{3}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow a=(1,t),\overrightarrow b=(t,9)$,若$\overrightarrow a∥\overrightarrow b$,则t=±3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=-cos2x-8sinx+9.则函数f(x)的最小值为(  )
A.2B.0C.18D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若二项式(x+$\frac{1}{\sqrt{x}}$)6的展开式中的x3项大于15,且x为等比数列an的公比,则$\underset{lim}{n→∞}\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{{a}_{3}+{a}_{4}+…+{a}_{n}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=ax3+$\frac{1}{2}$x2在x=1处的切线方程为4x-2y-5=0,记g(x)=$\frac{1}{f′(x)}$,程序框图如图所示,若输出的结果S>$\frac{2011}{2012}$,则判断框中可以填入的关于n的判断条件是(  )
A.n≤2011?B.n>2011?C.n≤2012?D.n>2012?

查看答案和解析>>

同步练习册答案