精英家教网 > 高中数学 > 题目详情
13.若二项式(x+$\frac{1}{\sqrt{x}}$)6的展开式中的x3项大于15,且x为等比数列an的公比,则$\underset{lim}{n→∞}\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{{a}_{3}+{a}_{4}+…+{a}_{n}}$=1.

分析 Tr+1=${∁}_{6}^{r}$x6-r$(\frac{1}{\sqrt{x}})^{r}$=${∁}_{6}^{r}$${x}^{6-\frac{3r}{2}}$,令$6-\frac{3r}{2}$=3,解得r.由${∁}_{6}^{2}$x3>15,解得x>1.再利用等比数列的前n项和公式、极限运算性质即可得出.

解答 解:Tr+1=${∁}_{6}^{r}$x6-r$(\frac{1}{\sqrt{x}})^{r}$=${∁}_{6}^{r}$${x}^{6-\frac{3r}{2}}$,
令$6-\frac{3r}{2}$=3,解得r=2.
T3=${∁}_{6}^{2}$x3
∴${∁}_{6}^{2}$x3>15,解得x>1.
∵x为等比数列an的公比,
∴a1+a2+…+an=$\frac{{a}_{1}({x}^{n}-1)}{x-1}$,a3+a4+…+an=$\frac{{a}_{1}{x}^{2}({x}^{n-2}-1)}{x-1}$,
则$\underset{lim}{n→∞}\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{{a}_{3}+{a}_{4}+…+{a}_{n}}$=$\underset{lim}{n→∞}$$\frac{{x}^{n}-1}{{x}^{n}-{x}^{2}}$=$\underset{lim}{n→∞}$$\frac{1-\frac{1}{{x}^{n}}}{1-\frac{{x}^{2}}{{x}^{n}}}$=1.
故答案为:1.

点评 本题考查了二项式定理的应用、等比数列的前n项和公式、极限运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,已知曲线C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0,y≤0)的离心率e=$\frac{\sqrt{6}}{3}$,且经过点G(1,-$\frac{\sqrt{6}}{3}$),曲线C2:x2=2y,过曲线C1上一点P作C2的两条切线,切点分别为A,B.
(Ⅰ)求曲线C1的方程;
(Ⅱ)求△PAB面积的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(2x+φ)在x=$\frac{π}{6}$处取得极大值,则函数y=f($\frac{π}{4}$+x)的图象(  )
A.关于点($\frac{π}{6}$,0)对称B.关于点($\frac{π}{3}$,0)对称
C.关于直线x=$\frac{π}{6}$对称D.关于直线x=$\frac{π}{3}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在四边形ABCD中,AB=6,BD=3$\sqrt{3}$,BC=4,∠ADB=∠CBD,A=60°,则△BCD的面积为6$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知(ax+$\frac{1}{x}$)6二项展开式的第五项系数为$\frac{15}{2}$,则正实数a的值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.给出下列五个结论:
①回归直线y=bx+a一定过样本中心点($\overline{x}$,$\overline{y}$);
②命题“?x∈R,均有x2-3x-2>0”的否定是:“?x0∈R,使得x02-3x0-2≤0”;
③将函数y=sinx+$\sqrt{3}$cosx的图象向右平移$\frac{π}{6}$后,所得到的图象关于y轴对称;
④?m∈R,使f(x)=(m-1)•x${\;}^{{m}^{2}-4m+3}$是幂函数,且在(0,+∞)上递增;
⑤函数f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{{2}^{x}•|lo{g}_{2}x|-1,x>0}\end{array}\right.$恰好有三个零点;
其中正确的结论为(  )
A.①②④B.①②⑤C.④⑤D.②③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=ex,g(x)=x+1,则关于f(x),g(x)的语句为假命题的是(  )
A.?x∈R,f(x)>g(x)B.?x1,x2∈R,f(x1)<g(x2
C.?x0∈R,f(x0)=g(x0D.?x0∈R,使得?x∈R,f(x0)-g(x0)≤f(x)-g(x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若全集为U=R,A={x|x2-x>0},则∁UA=[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求证:sinA+sinB-cosAsin(A+B)=2sinAsin2$\frac{A+B}{2}$.

查看答案和解析>>

同步练习册答案