分析 (1)设数列{an}的公差为d,由a1•a2=3,a2•a3=5,解得a1=1,d=2,即可得an=2n-1.
(2)由(1)知bn=(an+1)•2${\;}^{{a}_{n}}$=2n•22n-4=n•4n,利用错位相减法求和即可.
解答 解:(1)设数列{an}的公差为d,
因为a1•a2=3,a2•a3=5.
解得a1=1,d=2,所以an=2n-1.
(2)由(1)知bn=(an+1)•2${\;}^{{a}_{n}}$=2n•22n-1=n•4n,
Tn=1•41+2•42+3•43+…+n•4n.
4Tn=1•42+2•43+…+(n-1)•4n+n•4n+1,
两式相减,得-3Tn=41+42+43+…+4n-n•4n+1
=$\frac{4(1-{4}^{n})}{1-4}$-n•4n+1=$\frac{1-3n}{3}×{4}^{n-1}-\frac{4}{3}$,
所以Tn=$\frac{4+(3n-1)•{4}^{n+1}}{9}$.
点评 本题考查了等差数列的通项,考查了错位相减法求和,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 20 | B. | -15 | C. | -20 | D. | 15 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | -1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com