精英家教网 > 高中数学 > 题目详情
已知函数g(x)=x2-4x+5,函数f(x)=x3+ax2+bx+c在(-∞,-1),(2,+∞)上单调递增,在(-1,2)上单调递减,当且仅当x>4时,f(x)>g(x)
(1)求函数f(x)的解析式
(2)若y=m与函数g(x)的图象有3个公共点,求m的取值范围.
分析:(1)由函数f(x)=x3+ax2+bx+c在(-∞,-1),(2,+∞)上单调递增,在(-1,2)上单调递减,知函数f(x)在点x=-1或2处取得极值,可得f′(1)=0,f′(2)=0求导,即可求字母的值;
(2)由(1)知f(x)=x3-
3
2
x2-6x-11.作出其图象,如图,数形结合,若y=m与函数g(x)的图象有3个公共点,求m的取值范围.
解答:解:(1)f′(x)=3x2+2ax+b,
∵f(x)在(-∞,-1),(2,+∞)上单调递增,在(-1,2)上单调递减,
∴f′(-1)=0,f′(2)=0,
即f′(-1)=3-2ax+b=0,f′(2)=12+4ax+b=0,
∴a=-
3
2
,b=-6,;
又f(4)=g(4),⇒c=-11.
∴f(x)=x3-
3
2
x2-6x-11.
(2)由(1)知f(x)=x3-
3
2
x2-6x-11.
作出其图象,如图.
∵f(x)的图象与y=m的图象只有三个交点,
数形结合,m的取值范围:(-
15
2
,-21).
点评:考查应用导数研究函数的极值和单调性问题,有关函数图象交点个数问题,转化为图象交点的个数问题,体现了转化的思想方法,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,且对于一切实数x满足f(x+2)=f(2-x),f(x+7)=f(7-x)
(1)若f(5)=9,求:f(-5);
(2)已知x∈[2,7]时,f(x)=(x-2)2,求当x∈[16,20]时,函数g(x)=2x-f(x)的表达式,并求出g(x)的最大值和最小值;
(3)若f(x)=0的一根是0,记f(x)=0在区间[-1000,1000]上的根数为N,求N的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=ax2-2ax+1+b(a>0),在区间[2,3]上有最大值4,最小值1,设函数f(x)=
g(x)
x

(1)求a、b的值; 
(2)当
1
2
≤x≤2
时,求函数f(x)的值域;
(3)若不等式f(2x)-k≥0在x∈[-1,1]上恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)、g(x),下列说法正确的是(  )
A、f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数B、f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数C、f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数D、f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

科目:高中数学 来源:2011年高三数学一轮精品复习学案:2.1 函数及其表示(解析版) 题型:解答题

已知函数f(x)的定义域为R,且对于一切实数x满足f(x+2)=f(2-x),f(x+7)=f(7-x)
(1)若f(5)=9,求:f(-5);
(2)已知x∈[2,7]时,f(x)=(x-2)2,求当x∈[16,20]时,函数g(x)=2x-f(x)的表达式,并求出g(x)的最大值和最小值;
(3)若f(x)=0的一根是0,记f(x)=0在区间[-1000,1000]上的根数为N,求N的最小值.

查看答案和解析>>

同步练习册答案