ÒÑÖªÍÖÔ²C1£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊΪ
2
2
£¬Ö±Ïßl£ºy=x+2
2
ÓëÒÔÔ­µãΪԲÐÄ¡¢ÒÔÍÖÔ²C1µÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²ÏàÇУ®
£¨¢ñ£©ÇóÍÖÔ²C1µÄ·½³Ì£®
£¨¢ò£©ÉèÍÖÔ²C1µÄ×ó½¹µãΪF1£¬ÓÒ½¹µãΪF2£¬Ö±Ïßl1¹ýµãF1£¬ÇÒ´¹Ö±ÓÚÍÖÔ²µÄ³¤Öᣬ¶¯Ö±Ïßl2´¹Ö±l1ÓÚµãP£¬Ï߶ÎPF2µÄ´¹Ö±Æ½·ÖÏß½»l2ÓÚµãM£¬ÇóµãMµÄ¹ì¼£C2µÄ·½³Ì£»
£¨¢ó£©ÈôAC¡¢BDΪÍÖÔ²C1µÄÁ½ÌõÏ໥´¹Ö±µÄÏÒ£¬´¹×ãΪÓÒ½¹µãF2£¬ÇóËıßÐÎABCDµÄÃæ»ýµÄ×îСֵ£®
·ÖÎö£º£¨¢ñ£©ÓÉÌâÉèÌõ¼þÖªa2=2b2£¬ÔÙÓÉÖ±Ïßl£ºx-y+2=0ÓëÔ²x2+y2=b2ÏàÇУ¬Öª
2
2
2
=b£¬ÓÉ´Ë¿ÉÇó³öÍÖÔ²C1µÄ·½³Ì£®
£¨¢ò£©ÓÉMP=MF2£¬Öª¶¯µãMµ½¶¨Ö±Ïßl1£ºx=-2µÄ¾àÀëµÈÓÚËüµ½¶¨µãF2£¨2£¬0£©µÄ¾àÀ룬ÓÉ´Ë¿ÉÇó³öµãMµÄ¹ì¼£C2µÄ·½³Ì£®
£¨¢ó£©µ±Ö±ÏßACµÄбÂÊ´æÔÚÇÒ²»ÎªÁãʱ£¬ÉèÖ±ÏßACµÄбÂÊΪk£¬A£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬ÔòÖ±ÏßACµÄ·½³ÌΪy=k£¨x-2£©£¬ÁªÁ¢
x2
8
+
y2
4
=1
¼°y=k£¨x-2£©µÃ£¨1+2k2£©x2-8k2x+8k2-8=0£®È»ºóÀûÓøùÓëϵÊýµÄ¹Øϵ½áºÏÌâÉèÌõ¼þ½øÐÐÇó½â£®
½â´ð£º½â£º£¨¢ñ£©¡ße=
2
2
£¬¡àe2=
c2
a2
=
a2-b2
a2
=
1
2
£¬¡àa2=2b2
¡ßÖ±Ïßl£ºx-y+2=0ÓëÔ²x2+y2=b2ÏàÇÐ
¡à
2
2
2
=b£¬¡àb=2£¬b2=4£¬¡àa2=8£¬
¡àÍÖÔ²C1µÄ·½³ÌÊÇ
x2
8
+
y2
4
=1
£¨3·Ö£©
£¨¢ò£©¡ßMP=MF2£¬
¡à¶¯µãMµ½¶¨Ö±Ïßl1£ºx=-2µÄ¾àÀëµÈÓÚËüµ½¶¨µãF2£¨2£¬0£©µÄ¾àÀ룬
¡à¶¯µãMµÄ¹ì¼£CÊÇÒÔl1Ϊ׼Ïߣ¬F2Ϊ½¹µãµÄÅ×ÎïÏß
¡àµãMµÄ¹ì¼£C2µÄ·½³ÌΪy2=8x£¨6·Ö£©

£¨¢ó£©µ±Ö±ÏßACµÄбÂÊ´æÔÚÇÒ²»ÎªÁãʱ£¬ÉèÖ±ÏßACµÄбÂÊΪk£¬
A£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬ÔòÖ±ÏßACµÄ·½³ÌΪy=k£¨x-2£©
ÁªÁ¢
x2
8
+
y2
4
=1
¼°y=k£¨x-2£©µÃ£¨1+2k2£©x2-8k2x+8k2-8=0
ËùÒÔx1+x2=
8k2
1+2k2
£¬x1x2=
8k2-8
1+2k2

|AC|=
(1+k2)(x1-x2)2
=
(1+k2)[(x1+x2)2-4x1x2]
=
32
(k2+1)
1+2k2
£®£¨8·Ö£©
ÓÉÓÚÖ±ÏßBDµÄбÂÊΪ-
1
k
£¬ÓÃ-
1
k
´ú»»ÉÏʽÖеÄk¿ÉµÃ|BD|=
32
(1+k2)
k2+2

¡ßAC¡ÍBD£¬
¡àËıßÐÎABCDµÄÃæ»ýΪS=
1
2
|AC|•|BD|=
16(1+k2)2
(k2+2)(1+2k2)
..£¨10·Ö£©
ÓÉ£¨1+2k2£©£¨k2+2£©¡Ü[
(1+2k2)+(k2+2)
2
]2=[
3(k2+1)
2
]2
ËùÒÔS¡Ý
64
9
£¬µ±1+2k2=k2+2ʱ£¬¼´k=¡À1ʱȡµÈºÅ£®£¨11·Ö£©
Ò×Öª£¬µ±Ö±ÏßACµÄбÂʲ»´æÔÚ»òбÂÊΪÁãʱ£¬ËıßÐÎABCDµÄÃæ»ýS=8
×ÛÉϿɵã¬ËıßÐÎABCDÃæ»ýµÄ×îСֵΪ
64
9
£¨12·Ö£©
µãÆÀ£º±¾Ì⿼²éԲ׶ÇúÏߺÍÖ±ÏßµÄλÖùØϵºÍ×ÛºÏÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬עÒâΤ´ï¶¨ÀíµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C1£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬ÆäÖÐF2Ò²ÊÇÅ×ÎïÏßC2£ºy2=4xµÄ½¹µã£¬MÊÇC1ÓëC2ÔÚµÚÒ»ÏóÏ޵Ľ»µã£¬ÇÒ|MF2|=
5
3
£®
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©ÒÑÖªÁâÐÎABCDµÄ¶¥µãA£¬CÔÚÍÖÔ²C1ÉÏ£¬¶Ô½ÇÏßBDËùÔÚµÄÖ±ÏßµÄбÂÊΪ1£®
¢Ùµ±Ö±ÏßBD¹ýµã£¨0£¬
1
7
£©Ê±£¬ÇóÖ±ÏßACµÄ·½³Ì£»
¢Úµ±¡ÏABC=60¡ãʱ£¬ÇóÁâÐÎABCDÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖªÍÖÔ²C1£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÒ»Ìõ×¼Ïß·½³ÌÊÇx=
25
4
£¬Æä×ó¡¢ÓÒ¶¥µã·Ö±ðÊÇA¡¢B£»Ë«ÇúÏßC2£º
x2
a2
-
y2
b2
=1
µÄÒ»Ìõ½¥½üÏß·½³ÌΪ3x-5y=0£®
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì¼°Ë«ÇúÏßC2µÄÀëÐÄÂÊ£»
£¨2£©ÔÚµÚÒ»ÏóÏÞÄÚÈ¡Ë«ÇúÏßC2ÉÏÒ»µãP£¬Á¬½ÓAP½»ÍÖÔ²C1ÓÚµãM£¬Á¬½ÓPB²¢ÑÓ³¤½»ÍÖÔ²C1ÓÚµãN£¬Èô
AM
=
MP
£®Çó
MN
AB
µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C1£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©ÓëË«ÇúÏßC2£ºx2-
y2
4
=1Óй«¹²µÄ½¹µã£¬C2µÄÒ»Ìõ½¥½üÏßÓëÒÔC1µÄ³¤ÖáΪֱ¾¶µÄÔ²ÏཻÓÚA£¬BÁ½µã£¬ÈôC1Ç¡ºÃ½«Ï߶ÎABÈýµÈ·Ö£¬Ôòb2=
0.5
0.5
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÉÇͷһģ£©ÒÑÖªÍÖÔ²C1£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬ÓÒ¶¥µãΪA£¬ÀëÐÄÂÊe=
1
2

£¨1£©ÉèÅ×ÎïÏßC2£ºy2=4xµÄ×¼ÏßÓëxÖá½»ÓÚF1£¬ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÉèÒÑ֪˫ÇúÏßC3ÒÔÍÖÔ²C1µÄ½¹µãΪ¶¥µã£¬¶¥µãΪ½¹µã£¬bÊÇË«ÇúÏßC3ÔÚµÚÒ»ÏóÏÞÉÏÈÎÒâ-µã£¬ÎÊÊÇ·ñ´æÔÚ³£Êý¦Ë£¨¦Ë£¾0£©£¬Ê¹¡ÏBAF1=¦Ë¡ÏBF1Aºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸