精英家教网 > 高中数学 > 题目详情
精英家教网已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的一条准线方程是x=
25
4
,其左、右顶点分别是A、B;双曲线C2
x2
a2
-
y2
b2
=1
的一条渐近线方程为3x-5y=0.
(1)求椭圆C1的方程及双曲线C2的离心率;
(2)在第一象限内取双曲线C2上一点P,连接AP交椭圆C1于点M,连接PB并延长交椭圆C1于点N,若
AM
=
MP
.求
MN
AB
的值.
分析:(1)由已知
a2
c
=
25
4
b
a
=
3
5
c2=a2-b2
解得:
a=5
b=3
c=4
,由此能够求出椭圆C1的方程及双曲线C2的离心率.
(2)由A(-5,0),B(5,0),设M(x0y0),则由
AM
=
MP
,得M为AP的中点,P点坐标为(2x0+5,2y0),将M、P坐标代入C1、C2方程得
x02
25
+
y02
9
=1
(2x0+5)2
25
-
y02
9
=1
,解之得P(10,3
3
)
,直线PB:y=
3
3
5
(x-5)
,由此能够求出
MN
AB
=0
解答:精英家教网解:(1)由已知
a2
c
=
25
4
b
a
=
3
5
c2=a2-b2
解得:
a=5
b=3
c=4

∴椭圆的方程为
x2
25
+
y2
9
=1
,双曲线的方程
x2
25
-
y2
9
=1

c′=
25+9
=
34

∴双曲线的离心率e2=
34
5
(5分)
(2)由(Ⅰ)A(-5,0),B(5,0),设M(x0y0),则由
AM
=
MP

得M为AP的中点,∴P点坐标为(2x0+5,2y0
将M、P坐标代入C1、C2方程得
x02
25
+
y02
9
=1
(2x0+5)2
25
-
y02
9
=1

消去y0得2x02+5x0-25=0,
解之得x0=
5
2
x0=-5(舍)

由此可得P(10,3
3
)
,直线PB:y=
3
3
10-5
(x-5)

y=
3
3
5
(x-5)

代入
x2
25
+
y2
9
=1得:2x2-15x+25=0

x=
5
2
或5(舍)
xN=
5
2
,∴xN=xM
故MN⊥x轴,所以
MN
AB
=0
(12分)
点评:本题考查椭圆方程及双曲线离心率的求法,计算
MN
AB
的值.解题时要熟练掌握解决直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与圆锥曲线的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且|MF2|=
5
3

(1)求椭圆C1的方程;
(2)已知菱形ABCD的顶点A,C在椭圆C1上,对角线BD所在的直线的斜率为1.
①当直线BD过点(0,
1
7
)时,求直线AC的方程;
②当∠ABC=60°时,求菱形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,直线l:y=x+2
2
与以原点为圆心、以椭圆C1的短半轴长为半径的圆相切.
(Ⅰ)求椭圆C1的方程.
(Ⅱ)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1,且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)与双曲线C2:x2-
y2
4
=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点,若C1恰好将线段AB三等分,则b2=
0.5
0.5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,右顶点为A,离心率e=
1
2

(1)设抛物线C2:y2=4x的准线与x轴交于F1,求椭圆的方程;
(2)设已知双曲线C3以椭圆C1的焦点为顶点,顶点为焦点,b是双曲线C3在第一象限上任意-点,问是否存在常数λ(λ>0),使∠BAF1=λ∠BF1A恒成立?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案