【题目】如图,在多面体中,平面平面.四边形为正方形,四边形为梯形,且,,,.
(1)求证:;
(2)求直线与平面所成角的正弦值;
(3)线段上是否存在点,使得直线平面若存在,求的值;若不存在,请说明理由.
【答案】(Ⅰ)详见解析;(Ⅱ);(Ⅲ)线段上存在点,使得平面,且.
【解析】
(I)根据面面垂直的性质定理,证得平面,由此证得.(II)以为轴,轴,轴建立空间直角坐标系,通过计算直线的方向向量和平面的法向量,由此计算出线面角的正弦值.(III)设,用表示出点的坐标,利用直线的方向向量和平面的法向量垂直列方程,解方程求得的值,由此判断存在符合题意的点.
解:(Ⅰ)证明:因为为正方形,
所以.
又因为平面平面,
且平面平面,
所以平面.
所以.
(Ⅱ)由(Ⅰ)可知,平面,所以,.
因为,所以两两垂直.
分别以为轴,轴,轴建立空间直角坐标系(如图).
因为,,
所以,
所以.
设平面的一个法向量为,
则 即
令,则,
所以.
设直线与平面所成角为,
则.
(Ⅲ)设,
设,则,
所以,所以,
所以.
设平面的一个法向量为,则
因为,所以
令,则,所以.
在线段上存在点,使得平面等价于存在,使得.
因为,由,
所以,
所以线段上存在点,使得平面,且.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知直线的方程为,.
(1)若直线在轴、轴上的截距之和为-1,求坐标原点到直线的距离;
(2)若直线与直线:和:分别相交于、两点,点到、两点的距离相等,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,且上焦点为,过的动直线与椭圆相交于、两点.设点,记、的斜率分别为和.
(1)求椭圆的方程;
(2)如果直线的斜率等于,求的值;
(3)探索是否为定值?如果是,求出该定值;如果不是,求出的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,ABCD为矩形,点A、E、B、F共面,且和均为等腰直角三角形,且90°.
(Ⅰ)若平面ABCD平面AEBF,证明平面BCF平面ADF;
(Ⅱ)问在线段EC上是否存在一点G,使得BG∥平面CDF,若存在,求出此时三棱锥G-ABE与三棱锥G-ADF的体积之比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四种说法中正确的有______.(填序号)①数据2,2,3,3,4,6,7,3的众数与中位数相等;②数据1,3,5,7,9的方差是数据2,6,10,14,18的方差的一半;③一组数据的方差大小反映该组数据的波动性,若方差越大,则波动性越大,方差越小,则波动性越小.④频率分布直方图中各小长方形的面积等于相应各组的频数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,离心率,点是椭圆上的一个动点,面积的最大值是.
(1)求椭圆的方程;
(2)已知点,问是否存在直线与椭圆交于两点,且,若存在,求出直线斜率的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com