精英家教网 > 高中数学 > 题目详情

【题目】如图,在多面体中,平面平面.四边形为正方形,四边形为梯形,且

(1)求证:

(2)求直线与平面所成角的正弦值;

(3)线段上是否存在点,使得直线平面若存在,求的值;若不存在,请说明理由.

【答案】(Ⅰ)详见解析;(;()线段上存在点,使得平面,且

【解析】

I)根据面面垂直的性质定理,证得平面,由此证得.(II)以轴,轴,轴建立空间直角坐标系,通过计算直线的方向向量和平面的法向量,由此计算出线面角的正弦值.(III)设,用表示出点的坐标,利用直线的方向向量和平面的法向量垂直列方程,解方程求得的值,由此判断存在符合题意的点.

解:(Ⅰ)证明:因为为正方形,

所以

又因为平面平面

且平面平面

所以平面

所以

(Ⅱ)由(Ⅰ)可知,平面,所以

因为,所以两两垂直.

分别以轴,轴,轴建立空间直角坐标系(如图).

因为

所以

所以

设平面的一个法向量为

,则

所以

设直线与平面所成角为

(Ⅲ)设

,则

所以,所以

所以

设平面的一个法向量为,则

因为,所以

,则,所以

在线段上存在点,使得平面等价于存在,使得

因为,由

所以

解得

所以线段上存在点,使得平面,且

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的方程为.

1)若直线轴、轴上的截距之和为-1,求坐标原点到直线的距离;

2)若直线与直线分别相交于两点,点两点的距离相等,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线轴,轴的交点分别为,圆以线段为直径.

(Ⅰ)求圆的标准方程;

(Ⅱ)若直线过点,与圆交于点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知球O为三棱锥SABC的外接球, ,则球O的表面积是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,且上焦点为,过的动直线与椭圆相交于两点.设点,记的斜率分别为

1)求椭圆的方程;

2)如果直线的斜率等于,求的值;

3)探索是否为定值?如果是,求出该定值;如果不是,求出的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD为矩形,点A、E、B、F共面,且均为等腰直角三角形,且90°.

(Ⅰ)若平面ABCD平面AEBF,证明平面BCF平面ADF;

(Ⅱ)问在线段EC上是否存在一点G,使得BG∥平面CDF,若存在,求出此时三棱锥G-ABE与三棱锥G-ADF的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四种说法中正确的有______.(填序号)①数据22334673的众数与中位数相等;②数据13579的方差是数据26101418的方差的一半;③一组数据的方差大小反映该组数据的波动性,若方差越大,则波动性越大,方差越小,则波动性越小.④频率分布直方图中各小长方形的面积等于相应各组的频数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率,点是椭圆上的一个动点,面积的最大值是

1)求椭圆的方程;

2)已知点,问是否存在直线与椭圆交于两点,且,若存在,求出直线斜率的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案