【题目】已知球O为三棱锥S﹣ABC的外接球,
,则球O的表面积是( )
A.
B.
C.
D.![]()
【答案】A
【解析】
根据题意能够求出弦
的中垂面,那么中垂面一定经过球心,设出球心O位置,作
⊥平面SAC,可得
为等边三角形SAC的中心,在三角形ABM中求球的半径,需要用到四点共圆的性质解题.
解:取SC中点M,连接AM、MB,
![]()
因为△SAC是等边三角形,且SB=BC,
∴AM⊥SC,MB⊥SC,
∴SC⊥平面AMB,
∴球心O在平面AMB上,作
⊥平面SAC,可得
为等边三角形SAC的中心,
所以
=
,
取AB中点N,连接ON,∴ON⊥AB,
∴
四点共圆,AO为这四点共圆的直径,也是三棱锥SABC外接球的半径,连接
,
在△ABM中:
,
,
![]()
∴∠MAB=90°,
∴在直角三角形
中,
由勾股定理,得
=
,
∴三棱锥SABC外接球的半径长为AO=
=
,
.
故选:A.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,设椭圆
的下顶点为
,右焦点为
,离心率为
.已知点
是椭圆上一点,当直线
经过点
时,原点
到直线
的距离为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与圆
:相交于点
(异于点
),设点
关于原点
的对称点为
,直线
与椭圆相交于点
(异于点
).①若
,求
的面积;②设直线
的斜率为
,直线
的斜率为
,求证:
是定值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三家企业产品的成本分别为10000,12000,15000,其成本构成如下图所示,则关于这三家企业下列说法错误的是( )
![]()
A.成本最大的企业是丙企业B.费用支出最高的企业是丙企业
C.支付工资最少的企业是乙企业D.材料成本最高的企业是丙企业
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
左顶点为M,上顶点为N,直线MN的斜率为
.
(Ⅰ)求椭圆的离心率;
(Ⅱ)直线l:
与椭圆交于A,C两点,与y轴交于点P,以线段AC为对角线作正方形ABCD,若
.
(
)求椭圆方程;
(
)若点E在直线MN上,且满足
,求使得
最长时,直线AC的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个三角形数表按如下方式构成(如图:其中项数
):第一行是以4为首项,4为公差的等差数列,从第二行起,每一个数是其肩上两个数的和,例如:
;
为数表中第
行的第
个数.
…
![]()
…![]()
…![]()
……
(1)求第2行和第3行的通项公式
和
;
(2)证明:数表中除最后2行外每一行的数都依次成等差数列,并求
关于
的表达式;
(3)若
,
,试求一个等比数列
,使得
,且对于任意的
,均存在实数
,当
时,都有
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体
中,平面
平面
.四边形
为正方形,四边形
为梯形,且
,
,
,
.
![]()
(1)求证:
;
(2)求直线
与平面
所成角的正弦值;
(3)线段
上是否存在点
,使得直线
平面
若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
为椭圆
上任意一点,直线
与圆
交于
两点,点
为椭圆
的左焦点.
(Ⅰ)求椭圆
的离心率及左焦点
的坐标;
(Ⅱ)求证:直线
与椭圆
相切;
(Ⅲ)判断
是否为定值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的偶函数f(x),且对任意实数x都有f(x+2)=f(x),当x∈[0,1]时,f(x)=x2,若在区间[﹣3,3]内,函数g(x)=f(x)﹣kx﹣3k有6个零点,则实数k的取值范围为__.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com