精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,设椭圆的下顶点为,右焦点为,离心率为.已知点是椭圆上一点,当直线经过点时,原点到直线的距离为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与圆:相交于点(异于点),设点关于原点的对称点为,直线与椭圆相交于点(异于点).①若,求的面积;②设直线的斜率为,直线的斜率为,求证:是定值.

【答案】(1)(2)见证明

【解析】

(1)运用椭圆的离心率公式以及点到直线的距离公式,解方程可得,进而得到所求椭圆方程;(2)设直线的斜率为,则直线的方程为,联立椭圆方程可得的坐标,联立圆方程可得的坐标,运用两直线垂直的条件:斜率之积为,求得的坐标,①由可得,求得坐标,以及,由的面积为,计算可得;②运用两点的斜率公式,分别计算线的斜率为,直线的斜率为,即可得证.

(1)据题意,椭圆的离心率为,即.①

当直线经过点时,直线的方程为,即

由原点到直线的距离为,可知

.③

联立①②可得,,故.

所以椭圆的方程为.

(2)据题意,直线的斜率存在,且不为0,

设直线的斜率为,则直线的方程为

联立,整理可得

所以.

所以点的坐标为

联立

整理可得,所以.

所以点的坐标为.

显然,是圆的直径,故

所以直线的方程为.

代替,得点的坐标为

.

①由可得,

,解得.

根据图形的对称性,不妨取

则点的坐标分别为

.

所以的面积为.

②证明:直线的斜率

直线的斜率.

所以为定值,得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(题文)如图,长方形材料中,已知.点为材料内部一点,,且. 现要在长方形材料中裁剪出四边形材料,满足,点分别在边上.

(1)设,试将四边形材料的面积表示为的函数,并指明的取值范围;

(2)试确定点上的位置,使得四边形材料的面积最小,并求出其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体,则下列四个命题:

①点在直线上运动时,直线与直线所成角的大小不变

②点在直线上运动时,直线与平面所成角的大小不变

③点在直线上运动时,二面角的大小不变

④点在直线上运动时,三棱锥的体积不变

其中的真命题是

A.①③B.③④C.①②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆经过伸缩变换后得到曲线以坐标原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线的极坐标方程为

(1)求曲线的直角坐标方程及直线的直角坐标方程;

(2)设点上一动点,求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若在区间上不是单调函数,求实数的范围;

(2)若对任意,都有恒成立,求实数的取值范围;

(3)当时,设,对任意给定的正实数,曲线上是否存在两点,使得是以为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形, 平面,,点上的点,且 .

(1)求证:对任意的 ,都有.

(2)设二面角C-AE-D的大小为 ,直线BE与平面所成的角为 ,

,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的方程为.

1)若直线轴、轴上的截距之和为-1,求坐标原点到直线的距离;

2)若直线与直线分别相交于两点,点两点的距离相等,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中是真命题的是  

A. 命题“若,则”的否命题是“若,则

B. 为假命题,则pq均为假命题

C. 命题p,则

D. ”是“函数为偶函数”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知球O为三棱锥SABC的外接球, ,则球O的表面积是(

A.B.C.D.

查看答案和解析>>

同步练习册答案