精英家教网 > 高中数学 > 题目详情

设函数
(1)记的导函数,若不等式 在上有解,求实数的取值范围;
(2)若,对任意的,不等式恒成立,求m(m∈Z,m1)的值.

(1);(2)

解析试题分析:(1)首先由已知条件将不等式转化为它在上有解等价于,再利用导数求函数的最小值;(2)由已知时,对任意的,不等式恒成立,等价变形为上恒成立,为此只需构造函数,只要证明函数上单调递增即可.
试题解析:(1)不等式即为化简得,因而
上恒成立.
由不等式有解,可得知即实数的取值范围是
(2)当.由恒成立,得恒成立. 设
由题意知,故当时函数单调递增,
恒成立,即恒成立,因此,记,得
∵函数在上单调递增,在上单调递减,∴函数时取得极大值,并且这个极大值就是函数的最大值.由此可得,故,结合已知条件,可得
考点:1.导数的应用;2.恒成立问题中的参数取值范围问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

己知函数 .
(I)求的极大值和极小值;
(II)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求曲线处的切线方程;
(Ⅱ)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)求的单调区间;
(Ⅲ)若函数没有零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数
(1)当时,写出函数的单调递增区间;
(2)当时,求函数在区间[1,2]上的最小值;
(3)设,函数在(m,n)上既有最大值又有最小值,请分别求出m,n的取值范围(用a表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中是自然对数的底数.
(Ⅰ)求函数的单调区间和极值;
(Ⅱ)若函数对任意满足,求证:当时,
(Ⅲ)若,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求函数的单调区间并比较的大小关系
(Ⅱ)若函数的图象在点处的切线的倾斜角为,对于任意的,函数在区间上总不是单调函数,求的取值范围;
(Ⅲ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中.
(1)若处取得极值,求常数的值;
(2)设集合,若元素中有唯一的整数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,试讨论函数的单调性;
(2)证明:对任意的 ,有.

查看答案和解析>>

同步练习册答案