精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的一个焦点为,曲线上任意一点到的距离等于该点到直线的距离.

(Ⅰ)求及曲线的方程;

(Ⅱ)若直线与椭圆只有一个交点,与曲线交于两点,求的值.

【答案】(Ⅰ),曲线的方程为;(Ⅱ)0

【解析】

解:(Ⅰ)由题意得,则,设为曲线上任意一点,由题意得,化简即可;

(Ⅱ)设直线的方程为,联立直线与椭圆方程并消元,可求得,且,联立直线与曲线的方程消元,可得 ,根据三角形面积公式,将数据代入到即可求出结论.

解:(Ⅰ)由知该椭圆的焦点在轴上,

,解得

为曲线上任意一点,

由题意得,化简得

,曲线的方程为

(Ⅱ)设直线的方程为

,得

∵直线与椭圆只有一个交点

,∴

,①

,得

,②

由曲线的定义知

设点到直线的距离为

将①②代入分子

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知分别为的中点,,将沿折起,得到四棱锥的中点.

1)证明:平面

2)当正视图方向与向量的方向相同时,此时的正视图的面积为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动,在1859年,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字的素数个数大约可以表示为的结论(素数即质数,).根据欧拉得出的结论,如下流程图中若输入的值为,则输出的值应属于区间( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=axsinxaR.

1)当时,fx0恒成立,求正实数a的取值范围;

2)当a≥1时,探索函数Fxfx)﹣cosx+a1在(0π)上的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为(其中t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线C2的极坐标方程为.

1)把曲线C1的方程化为普通方程,C2的方程化为直角坐标方程;

2)若曲线C1C2相交于AB两点,AB的中点为P,过点P做曲线C2的垂线交曲线C1EF两点,求|PE||PF|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为α为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcosθ1.

1)求C1的极坐标方程,并求C1C2交点的极坐标

2)若曲线C3θβρ0)与C1,C2的交点分别为M,N,求|OM||ON|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,港口A在港口O的正东100海里处,在北偏东方向有条直线航道OD,航道和正东方向之间有一片以B为圆心,半径为海里的圆形暗礁群(在这片海域行船有触礁危险),其中OB海里,tanAOB,cosAOD,现一艘科考船以海里/小时的速度从O出发沿OD方向行驶,经过2个小时后,一艘快艇以50海里/小时的速度准备从港口A出发,并沿直线方向行驶与科考船恰好相遇.

1)若快艇立即出发,判断快艇是否有触礁的危险,并说明理由;

2)在无触礁危险的情况下,若快艇再等x小时出发,求x的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年初,我国突发新冠肺炎疫情,疫情期间中小学生“停课不停学”.已知某地区中小学生人数情况如甲图所示,各学段学生在疫情期间“家务劳动”的参与率如乙图所示.为了进一步了解该地区中小学生参与“家务劳动”的情况,现用分层抽样的方法抽取4%小学初中高中学段的学生进行调查,则抽取的样本容量、抽取的高中生家中参与“家务劳动”的人数分别为( )

A.2750200B.2750110C.1120110D.1120200

查看答案和解析>>

同步练习册答案