【题目】已知椭圆
的一个焦点为
,曲线
上任意一点到
的距离等于该点到直线
的距离.
(Ⅰ)求
及曲线
的方程;
(Ⅱ)若直线
与椭圆只有一个交点
,与曲线
交于
两点,求
的值.
科目:高中数学 来源: 题型:
【题目】已知
,
,
分别为
的中点,
,将
沿
折起,得到四棱锥
,
为
的中点.
![]()
(1)证明:
平面
;
(2)当正视图方向与向量
的方向相同时,此时
的正视图的面积为
,求四棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动,在1859年,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字
的素数个数大约可以表示为
的结论(素数即质数,
).根据欧拉得出的结论,如下流程图中若输入
的值为
,则输出
的值应属于区间( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax﹣sinx(a∈R).
(1)当
时,f(x)
0恒成立,求正实数a的取值范围;
(2)当a≥1时,探索函数F(x)
f(x)﹣cosx+a﹣1在(0,π)上的零点个数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C1的参数方程为
(其中t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线C2的极坐标方程为
.
(1)把曲线C1的方程化为普通方程,C2的方程化为直角坐标方程;
(2)若曲线C1,C2相交于A,B两点,AB的中点为P,过点P做曲线C2的垂线交曲线C1于E,F两点,求|PE||PF|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C1的参数方程为
(α为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcosθ=1.
(1)求C1的极坐标方程,并求C1与C2交点的极坐标
;
(2)若曲线C3:θ=β(ρ>0)与C1,C2的交点分别为M,N,求|OM||ON|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,港口A在港口O的正东100海里处,在北偏东方向有条直线航道OD,航道和正东方向之间有一片以B为圆心,半径为
海里的圆形暗礁群(在这片海域行船有触礁危险),其中OB=
海里,tan∠AOB=
,cos∠AOD=
,现一艘科考船以
海里/小时的速度从O出发沿OD方向行驶,经过2个小时后,一艘快艇以50海里/小时的速度准备从港口A出发,并沿直线方向行驶与科考船恰好相遇.
![]()
(1)若快艇立即出发,判断快艇是否有触礁的危险,并说明理由;
(2)在无触礁危险的情况下,若快艇再等x小时出发,求x的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年初,我国突发新冠肺炎疫情,疫情期间中小学生“停课不停学”.已知某地区中小学生人数情况如甲图所示,各学段学生在疫情期间“家务劳动”的参与率如乙图所示.为了进一步了解该地区中小学生参与“家务劳动”的情况,现用分层抽样的方法抽取4%小学初中高中学段的学生进行调查,则抽取的样本容量、抽取的高中生家中参与“家务劳动”的人数分别为( )
![]()
A.2750,200B.2750,110C.1120,110D.1120,200
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com