精英家教网 > 高中数学 > 题目详情
13.如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求该几何体的体积.

分析 (Ⅰ)推导出AC⊥BD,AC⊥DE,由此能证明AC⊥平面BDE.
(Ⅱ)该几何体的体积V=VB-AEF+VE-ABCD,由此能求出该几何体的体积.

解答 证明:(Ⅰ)∵ABCD是边长为3的正方形,∴AC⊥BD,
∵DE⊥平面ABCD,AC?平面ABCD,
∴AC⊥DE,
∵BD∩DE=D,∴AC⊥平面BDE.
解:(Ⅱ)∵ABCD是边长为3的正方形,AF∥DE,DE=3AF,
BE与平面ABCD所成角为60°.
∴BD=$\sqrt{9+9}$=3$\sqrt{2}$,ED=3$\sqrt{6}$,AF=$\sqrt{6}$,
由题意得DE⊥平面ABCD,AB⊥平面AEF,
∴该几何体的体积:
V=VB-AEF+VE-ABCD
=$\frac{1}{3}×3×[\frac{1}{2}(\sqrt{6}+3\sqrt{6})×3-\frac{1}{2}×3×3\sqrt{6}]$+$\frac{1}{3}×3\sqrt{6}×{3}^{2}$
=$\frac{21\sqrt{6}}{2}$.

点评 本题考查线面垂直的证明,考查几何体的体积的求法,涉及到空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知-1≤a≤3,2≤b≤4,则2a-b的取值范围是(  )
A.[-6,4]B.[0,10]C.[-4,2]D.[-5,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某棱柱的三视图如图示,则该棱柱的体积为(  )
A.3B.4C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)的导函数为f'(x)=a(x+1)(x-a),(a<0)且f(x)在x=a处取到极大值,那么a的取值范围是(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\sqrt{3}sin({ωx-\frac{π}{6}})+b$(ω>0),且函数图象的对称中心到对称轴的最小距离为$\frac{π}{4}$,当$x∈[{0,\frac{π}{4}}]$时,f(x)的最大值为1.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)将函数f(x)的图象向右平移$\frac{π}{12}$个单位长度得到函数g(x)的图象,若g(x)-3≤m≤g(x)+3在$x∈[{0,\frac{π}{3}}]$上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落过程中它将3次遇到黑色障碍物,最后落入A袋或B袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是$\frac{1}{2}$.
(Ⅰ)求小球落入B袋中的概率P(B);
(Ⅱ)在容器入口处依次放入4个小球,求恰好有3个球落入A袋中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某特色餐馆开通了美团外卖服务,在一周内的某特色外卖份数x(份)与收入y(元)之间有如下的对应数据:
外卖份数x(份)24568
收入y(元)3040605070
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计外卖份数为12份时,收入为多少元.
注:参考公式:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata$=$\overline y-\widehatb\overline x$;
参考数据:$\sum_{i=1}^5{x_1^2}=145,\sum_{i=1}^5{y_1^2}=13500,\sum_{i=1}^5{{x_i}{y_i}}=1380$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数$f(x)=Asin({ωx+φ})({x∈R,A>0,ω>0,|φ|<\frac{π}{2}})$的部分图象如图所示,如果${x_1},{x_2}∈({-\frac{π}{6},\frac{π}{3}})$,且f(x1)=f(x2),则f(x1+x2)=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax3-x+1的图象在点(1,f(1))处的切线过点(2,3).
(1)求a的值;
(2)求函数f(x)的极值.

查看答案和解析>>

同步练习册答案