精英家教网 > 高中数学 > 题目详情
6.如图,AB为圆O的直径,CD为垂直于AB的一条弦,垂足为E,弦BM与CD相交于点F.
(Ⅰ)证明:A、E、F、M四点共圆;
(Ⅱ)若MF=4BF=2,求线段BC的长.

分析 (Ⅰ)连结AM,由AB为直径可知∠AMB=90°,又CD⊥AB,由此能证明A、E、F、M四点共圆.
(Ⅱ)连结AC,由A、E、F、M四点共圆,得BF•BM=BE•BA,结合直角三角形的射影定理,可得BC2=BE•BA,由此能求出线段BC的长.

解答 (Ⅰ)证明:如图,连结AM,
由AB为直径可知∠AMB=90°,
又CD⊥AB,所以∠AEF=∠AMB=90°,
因此A、E、F、M四点共圆.
(Ⅱ)解:连结AC,
由A、E、F、M四点共圆,
所以BF•BM=BE•BA,
在Rt△ABC中,BC2=BE•BA,
又由MF=4BF=2,知BF=$\frac{1}{2}$,BM=2+$\frac{1}{2}$=$\frac{5}{2}$,
所以BC2=BF•BM=$\frac{1}{2}$×$\frac{5}{2}$,即BC=$\frac{\sqrt{5}}{2}$.

点评 本题考查四点共圆的证明,注意运用对角互补,考查线段长的求法,解题时要认真审题,注意圆的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.如图,对于正方体ABCD-A1B1C1D1,给出下列四个结论:
①直线AC∥平面A1B1C1D1
②直线AC1∥直线A1B
③直线AC⊥平面DD1B1B
④直线AC1⊥直线BD
其中正确结论的序号为①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知,二面角α-l-β的平面角为120°,二面角γ-m-Φ中,γ⊥α,Φ⊥β,则二面角γ-m-Φ的平面角大小为(  )
A.60°B.120°C.60°或120°D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知某正三棱锥的三视图如图所示,则该三棱锥的表面积为(  )
A.9$\sqrt{3}$B.9$\sqrt{2}$+$\frac{9\sqrt{3}}{4}$C.12$\sqrt{2}$D.12$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,以△ABC的BC边为直径的半圆交AB于点D,交AC于点E,EF⊥BC于F,BF:FC=5:1,AB=8,AE=2,则AD长为(  )
A.$\frac{{1+\sqrt{21}}}{2}$B.$\frac{{1+\sqrt{3}}}{2}$C.$\frac{{1+\sqrt{2}}}{2}$D.$\frac{43}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若关于x,y的方程组$\left\{\begin{array}{l}{sinx=msi{n}^{3}y}\\{cosx=mco{s}^{3}y}\end{array}\right.$有实数解,则正实数m的取值范围为[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在三角形ABC中,∠ACB=90°,CD⊥AB于D,以CD为直径的圆分别交AC、BC于E、F.
(1)求证:S四边形CEDF=BF•AE;
(2)求证:$\frac{BF}{AE}=\frac{{B{C^3}}}{{A{C^3}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为ρ=2cosθ,直线l的参数方程为$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,α为直线的倾斜角).
(I)写出直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C有公共点,求角α的正切值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)在(-∞,+∞)内可导,且恒有f′(x)>0,则下列结论正确的是(  )
A.f(x)在R上单调递增B.f(x)在R上是常数C.f(x)在R上不单调D.f(x)在R上单调递减

查看答案和解析>>

同步练习册答案