分析 (Ⅰ)连结AM,由AB为直径可知∠AMB=90°,又CD⊥AB,由此能证明A、E、F、M四点共圆.
(Ⅱ)连结AC,由A、E、F、M四点共圆,得BF•BM=BE•BA,结合直角三角形的射影定理,可得BC2=BE•BA,由此能求出线段BC的长.
解答
(Ⅰ)证明:如图,连结AM,
由AB为直径可知∠AMB=90°,
又CD⊥AB,所以∠AEF=∠AMB=90°,
因此A、E、F、M四点共圆.
(Ⅱ)解:连结AC,
由A、E、F、M四点共圆,
所以BF•BM=BE•BA,
在Rt△ABC中,BC2=BE•BA,
又由MF=4BF=2,知BF=$\frac{1}{2}$,BM=2+$\frac{1}{2}$=$\frac{5}{2}$,
所以BC2=BF•BM=$\frac{1}{2}$×$\frac{5}{2}$,即BC=$\frac{\sqrt{5}}{2}$.
点评 本题考查四点共圆的证明,注意运用对角互补,考查线段长的求法,解题时要认真审题,注意圆的性质的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 60° | B. | 120° | C. | 60°或120° | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9$\sqrt{3}$ | B. | 9$\sqrt{2}$+$\frac{9\sqrt{3}}{4}$ | C. | 12$\sqrt{2}$ | D. | 12$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{1+\sqrt{21}}}{2}$ | B. | $\frac{{1+\sqrt{3}}}{2}$ | C. | $\frac{{1+\sqrt{2}}}{2}$ | D. | $\frac{43}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)在R上单调递增 | B. | f(x)在R上是常数 | C. | f(x)在R上不单调 | D. | f(x)在R上单调递减 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com