精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,M,N分别是棱DD1,D1C1的中点,则异面直线MN与AC所成角的度数是
 
考点:异面直线及其所成的角
专题:空间角
分析:首先建立直角坐标系,进一步求出相应的点的坐标,利用向量的数量积求出异面直线的夹角.
解答: 解:设正方体正方体ABCD-A1B1C1D1的边长为2,建立直角坐标系D-xyz,根据题意得到:A(2,0,0)C(0,2,0),
由于M,N分别是棱DD1,D1C1的中点,
M(0,0,1),N(0,1,0)
则:
MN
=(0,1,-1)
AC
=(-1,1,0)

设:异面直线MN与AC所成角为θ
则:cosθ=
MN
AC
|
MN
||
AC
|
=
1
2

由于:0°<θ≤90°
所以:θ=60°
故答案为:60°
点评:本题考查的知识要点:如何建立直角坐标系,向量的数量积,异面直线的夹角及相关的运算问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=ln(x-2)的定义域是(  )
A、(-∞,+∞)
B、(-∞,2)
C、(0,2)
D、(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知指数函数y=g(x)满足:g(2)=4,定义域为R的函数f(x)=
-g(x)+a
2g(x)+b
是奇函数.
(1)求a,b的值;
(2)判断函数f(x)的单调性并用定义加以证明;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x-
1
x
,若对于任意的x1,x2∈[2,3],都有|f(x1)-f(x2)|≤a成立,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过(1,1)点,将直线l沿x轴向左平移2个单位,再沿y轴向下平移1个单位后,直线l回到原来的位置,则直线l的方程
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆x2+y2-4x-4y-10=0上至少有三个不同点到直线l:ax+by=0的距离为2
2
,则直线l的斜率的取值范围是(  )
A、[2-
3
,1]
B、[2-
3
,2+
3
]
C、[
3
3
3
]
D、[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,对于任意的x∈R,都满足f(-x)=f(x),且对于任意的a,b∈(-∞,0],当a≠b时,都有
f(a)-f(b)
a-b
<0
<0.若f(m+1)<f(2),则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x<-2或x≥6},B={x|-3≤x≤5}
(Ⅰ)求∁RA;A∪B;
(Ⅱ)若C={x|x>a},且B∩C=B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax-1+a,a∈R.
(Ⅰ)若a=2,试求函数y=
f(x)
x
(x>0)的最小值;
(Ⅱ)对于任意的x∈[0,2],不等式f(x)≤a成立,试求a的取值范围.

查看答案和解析>>

同步练习册答案