精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-2ax-1+a,a∈R.
(Ⅰ)若a=2,试求函数y=
f(x)
x
(x>0)的最小值;
(Ⅱ)对于任意的x∈[0,2],不等式f(x)≤a成立,试求a的取值范围.
考点:利用导数研究函数的单调性,利用导数求闭区间上函数的最值
专题:函数的性质及应用
分析:(Ⅰ)由y=
f(x)
x
=
x2-4x+1
x
=x+
1
x
-4.利用基本不等式即可求得函数的最小值;
(Ⅱ)由题意可得不等式f(x)≤a成立”只要“x2-2ax-1≤0在[0,2]恒成立”.不妨设g(x)=x2-2ax-1,则只要g(x)≤0在[0,2]恒成立.结合二次函数的图象列出不等式解得即可.
解答: 解:(Ⅰ)依题意得y=
f(x)
x
=
x2-4x+1
x
=x+
1
x
-4.
因为x>0,所以x+
1
x
≥2
,当且仅当x=
1
x
时,即x=1时,等号成立.
所以y≥-2.
所以当x=1时,y=
f(x)
x
的最小值为-2.…(6分)
(Ⅱ)因为f(x)-a=x2-2ax-1,所以要使得“?x∈[0,2],
不等式f(x)≤a成立”只要“x2-2ax-1≤0在[0,2]恒成立”.
不妨设g(x)=x2-2ax-1,则只要g(x)≤0在[0,2]恒成立.
因为g(x)=x2-2ax-1=(x-a)2-1-a2
所以
g(0)≤0
g(2)≤0
0-0-1≤0
4-4a-1≤0
,解得a≥
3
4

所以a的取值范围是[
3
4
,+∞). …(13分)
点评:本题主要考查函数的最值即恒成立问题的划归转化等知识,考查学生的运算求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,M,N分别是棱DD1,D1C1的中点,则异面直线MN与AC所成角的度数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1中,平面D1B1A和平面C1DB的位置关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场预计2015年从1月起前x个月顾客对某种商品的需求总量p(x)=
1
2
x(x+1)(41-2x)(x≤12,x∈Z+)(单位:件)
(1)写出第x个月的需求量f(x)的表达式;
(2)若第x个月的销售量g(x)=
f(x)-21x,1≤x<7,x∈Z+
x2
ex
(
1
3
x2-10x+96),7≤x≤12,x∈Z+
(单位:件),每件利润q(x)=
10ex
x
(单位:元),求该商场销售该商品,预计第几个月的月利润达到最大值?月利润的最大值是多少?(参考数据:e6≈403)

查看答案和解析>>

科目:高中数学 来源: 题型:

将圆心角为120°,面积为3π的扇形,作为圆锥的侧面,圆锥的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,若a1=1,an-an-1=n,(n≥2),则该数列的通项an=(  )
A、
n(n+1)
2
B、
n(n-1)
2
C、
(n+1)(n+2)
2
D、
n(n+1)
2
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)有f(x)=-f(x+1),且x∈[-1,1]时f(x)=1-x2.函数g(x)=
lgx(x>0)
-
1
x
(x<0)
 则函数h(x)=f(x)-g(x)在区间[-5,4]内的零点个数为(  )
A、7B、8C、9D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|lgx|,0<x≤10
-
1
2
x+6,x>10
若三个正实数x1,x2,x3互不相等,且满足f(x1)=f(x2)=f(x3),则x1x2x3的取值范围是(  )
A、(20,24)
B、(10,12)
C、(5,6)
D、(1,10)

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sin(2x+φ)的图象沿x轴向左平移
π
8
个单位后,得到一个关于y轴对称的图象,则φ的一个可能取值为(  )
A、
4
B、
8
C、
π
4
D、-
π
4

查看答案和解析>>

同步练习册答案