精英家教网 > 高中数学 > 题目详情
数列{an}中,a1=1,a2=3,an+2=3an+1-kan(k≠0)对任意n∈N*成立,令bn=an+1-an,且{bn}是等比数列.
(1)求实数k的值;   
(2)求数列{an}的通项公式.
分析:(1)首先根据题干条件a1=1,a2=3,an+2=3an+1-kan求出a3=9-k,a4=27-6k,即可求出b1=2,b2=6-k,b3=18-5k,又知{bn}成等比数列,可得b22=b1•b3,于是可求出k的值.
(2)根据(1)的条件求出数列{bn}的通项公式,然后由bn=an+1-an,即可求出数列{an}的通项公式.
解答:解:(1)∵a1=1,a2=3,a3=9-k,a4=27-6k,
∴b1=2,b2=6-k,b3=18-5k.
∵{bn}成等比数列,∴b22=b1•b3
解得 k=2或k=0(舍)…(4分)
当k=2时,an+2=3an+1-2an
即 an+2-an+1=2(an+1-an),∴
bn+1
bn
=2

∴k=2时满足条件.…(6分)
(2)bn=2n…(8分)
an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=1+2+22+…+2n-1=2n-1(14分)
点评:本题是中档题,考查数列的应用,数列基本知识的应用,考查转化思想,累加法是数列求和的常用方法,常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}中,a1=1,an=
12
an-1+1(n≥2),求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=
1
5
,an+an+1=
6
5n+1
,n∈N*,则
lim
n→∞
(a1+a2+…+an)等于(  )
A、
2
5
B、
2
7
C、
1
4
D、
4
25

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=-60,an+1-an=3,(1)求数列{an}的通项公式an和前n项和Sn(2)问数列{an}的前几项和最小?为什么?(3)求|a1|+|a2|+…+|a30|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,对?n∈N*an+2an+3•2n,an+1≥2an+1,则a2=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•长宁区一模)如果一个数列{an}对任意正整数n满足an+an+1=h(其中h为常数),则称数列{an}为等和数列,h是公和,Sn是其前n项和.已知等和数列{an}中,a1=1,h=-3,则S2008=
-3012
-3012

查看答案和解析>>

同步练习册答案