精英家教网 > 高中数学 > 题目详情
已知a、b、c分别为△ABC的三个内角A、B、C的对边,且a、b、c成等差数列,B=60°,则△ABC的形状为
 
分析:求出A+C=120°,据a、b、c成等差数列,得 2b=a+c,由正弦定理可得
3
=sinA+sinC,解得cos
A-C
2
=1,从而得到A-C=0,故△ABC为等边三角形.
解答:解:∵B=60°,∴A+C=120°.∵a、b、c成等差数列,∴2b=a+c,
由正弦定理可得 2sinB=
3
=sinA+sinC=2sin
A+C
2
 cos
A-C
2
=
3
cos
A-C
2

∴cos
A-C
2
=1,又-
3
<A-C<
3
,∴A-C=0,故△ABC为等边三角形,
故答案为正三角形.
点评:本题考查等差数列的定义,正弦定理,和差化积公式,根据三角函数的值求角,求出 cos
A-C
2
=1,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b,c分别为△ABC的三个内角A,B,C的对边,且(b+a+c)(b-a-c)+2
3
absinC=0

(1)求B
(2)若b=2,△ABC的面积为
3
,求a,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+
3
asinC-b-c=0

(1)求A;
(2)若a=2,△ABC的面积为
3
,证明△ABC是正三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)已知a,b,c分别为△ABC三个内角A,B,C的对边,2bcosc=2a-c
(I)求 B;
(II)若△ABC的面积为
3
,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•静安区一模)已知a,b,c分别为△ABC三个内角A、B、C所对的边长,a,b,c成等比数列.
(1)求B的取值范围;
(2)若x=B,关于x的不等式cos2x-4sin(
π
4
+
x
2
)sin(
π
4
-
x
2
)+m>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+
3
asinC-b-c=0

(1)求A;
(2)若△ABC的面积S=5
3
,b=5,求sinBsinC的值.

查看答案和解析>>

同步练习册答案