精英家教网 > 高中数学 > 题目详情
e1
e2
是两个不共线的向量,
AB
=2
e1
+k
e2
CB
=
e1
+3
e2
CD
=2
e1
-
e2
,若A、B、D三点共线,求k的值.
分析:利用向量的运算法则求出
BD
;将三点共线转化为两个向量共线;利用向量共线的充要条件列出方程;利用平面向量的基本定理列出方程,求出k的值.
解答:解:∵
BD
=
CD
-
CB
=2
e1
-
e2
-(
e1
+3
e2
)=
e1
-4
e2

若A,B,D三点共线,则
AB
BD
共线,
AB
BD

2
e1
+k
e2
e1
-4λ
e2

由于
e1
e2
不共线可得:
2
e1
e1

k
e2
=-4λ
e2

故λ=2,k=-8
点评:本题考查向量的运算法则、考查向量共线的充要条件、考查平面向量的基本定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

e1
e2
是两个不共线的非零向量,
(1)如果
AB
=
e1
+
e2
BC
=2
e1
+8
e2
CD
=3(
e1
-
e2
)
,求证:A、B、D三点共线.
(2)欲使k
e1
+
e2
e1
+k
e2
共线,试确定实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
是两个不共线的向量,且向量
a
=2
e1
-
e2
与向量
b
=
e1
+λ
e2
是共线向量,则实数λ=
-
1
2
-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设e1与e2是两个不共线向量,
AB
=3e1+2e2
CB
=ke1+e2
CD
=3e1-2ke2,若A、B、D三点共线,则k的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
是两个不共线的向量,若向量
a
=
e1
e2
(λ∈R)
与向量
b
=-(λ
e1
-4
e2
)
共线且方向相同,则λ=
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

e
1
e
2是两个不共线的向量,已知
AB
=2
e
1+k
e
2
CB
=
e
1+3
e
2
CD
=2
e
1-
e
2,若A、B、D三点共线,则k的值是(  )

查看答案和解析>>

同步练习册答案