精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,抛物线的焦点为,点是抛物线上一点,且

(1)求的值;

(2)若为抛物线上异于的两点,且.记点到直线的距离分别为,求的值.

【答案】(1);(2).

【解析】分析:(1)利用抛物线的定义求p的值.(2)先求出a的值,再联立直线的方程和抛物线的方程得到韦达定理,再求|(y1+2) (y2+2)|的值.

详解:(1)因为点A(1,a) (a>0)是抛物线C上一点,且AF=2,

所以1=2,所以p=2.

(2)由(1)得抛物线方程为y2=4x

因为点A(1,a) (a>0)是抛物线C上一点,所以a=2.

设直线AM方程为x-1=m (y-2) (m≠0),M(x1y1),N(x2y2).

消去x,得y2-4m y+8m-4=0,

即(y-2)( y-4m+2)=0,所以y1=4m-2.

因为AMAN,所以-m,得y2=--2,

所以d1d2=|(y1+2) (y2+2)|=|4m×(-)|=16.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,平面平面,四边形为正方形,四边形为梯形,且

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线E:x2=2py(p>0)的焦点F作斜率率分别为k1 , k2的两条不同直线l1 , l2 , 且k1+k2=2.l1与E交于点A,B,l2与E交于C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.
(1)若k1>0,k2>0,证明:
(2)若点M到直线l的距离的最小值为 ,求抛物线E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,运行相应的程序,输出的结果i=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知函数,其中

)当,求曲线在点处的切线方程;

时,求函数的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程的四个根组成一个首项为的等差数列,则_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个产品有若干零部件构成,加工时需要经过7道工序,分别记为.其中,有些工序因为是制造不同的零部件,所以可以在几台机器上同时加工;有些工序因为是对同一个零部件进行处理,所以存在加工顺序关系,若加工工序必须要在工序完成后才能开工,则称的紧前工序.现将各工序的加工次序及所需时间(单位:小时)列表如下:

工序

加工时间

3

4

2

2

2

1

5

紧前工序

现有两台性能相同的生产机器同时加工该产品,则完成该产品的最短加工时间是( )

(假定每道工序只能安排在一台机器上,且不能间断.)

A. 11个小时 B. 10个小时 C. 9个小时 D. 8个小时

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某设计师设计的型饰品的平面图,其中支架两两成,且.现设计师在支架上装点普通珠宝,普通珠宝的价值为,且长成正比,比例系数为为正常数);在区域(阴影区域)内镶嵌名贵珠宝,名贵珠宝的价值为,且的面积成正比,比例系数为.设

1)求关于的函数解析式,并写出的取值范围;

2)求的最大值及相应的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,墙上有一壁画,最高点离地面4米,最低点离地面2米,观察者从距离墙米,离地面高米的处观赏该壁画,设观赏视角

(1)若问:观察者离墙多远时,视角最大?

(2)若变化时,求的取值范围.

查看答案和解析>>

同步练习册答案