精英家教网 > 高中数学 > 题目详情

【题目】如图,在多面体中,平面平面,四边形为正方形,四边形为梯形,且

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.

【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析

【解析】

(Ⅰ)转化为证明;(Ⅱ)转化为证明;(Ⅲ)根据线面平行的性质定理.

(Ⅰ)因为四边形为正方形,所以,由于平面

平面,所以平面.

(Ⅱ)因为四边形为正方形,

所以.平面平面

平面平面

所以平面.所以.

中点,连接.

可得四边形为正方形.

所以.所以.所以.

因为,所以平面.

(Ⅲ)存在,当的中点时,平面,此时.

证明如下:

连接于点,由于四边形为正方形,

所以的中点,同时也是的中点.

因为,又四边形为正方形,

所以

连接,所以四边形为平行四边形.

所以.又因为平面平面

所以平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn= (n∈N*).
(1)求数列{an}的通项公式;
(2)若bn=anlog3an , 求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电脑公司有6名产品推销员,其工作年限与推销金额数据如下表:

推销员编号

1

2

3

4

5

工作年限/年

3

5

6

7

9

推销金额/万元

2

3

3

4

5

(1)求年推销金额关于工作年限的线性回归方程;

(2)若第6名推销员的工作年限为11年,试估计他的年推销金额.

附:线性回归方程中,,其中为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx﹣ax,g(x)=ex﹣ax,其中a为实数.
(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;
(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求经过直线L13x + 4y – 5 = 0与直线L22x – 3y + 8 = 0的交点M,且满足下列条件的直线方程

1)与直线2x + y + 5 = 0平行 ;

2)与直线2x + y + 5 = 0垂直;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的五个区域中,中心区域是一幅图画,现要求在其余四个区域中涂色,有四种颜色可供选择.要求每个区域只涂一种颜色且相邻区域所涂颜色不同,则不同的涂色方法种数为( )

A. 56 B. 72 C. 64 D. 84

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,其中.函数的图象过点,点与其相邻的最高点的距离为4

(Ⅰ)求函数的单调递减区间;

(Ⅱ)计算的值;

(Ⅲ)设函数,试讨论函数在区间 [03] 上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线的焦点为,点是抛物线上一点,且

(1)求的值;

(2)若为抛物线上异于的两点,且.记点到直线的距离分别为,求的值.

查看答案和解析>>

同步练习册答案