精英家教网 > 高中数学 > 题目详情
设x,y满足约束条件
x-y+2≥0
2x+y-5≥0
2x-y-3≤0
,则z=3x+2y的最大值为(  )
A、8B、9C、28D、29
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.
解答: 解:作出不等式组对于的平面区域如图:
由z=3x+2y,则y=-
3
2
x+
z
2

平移直线y=-
3
2
x+
z
2
,由图象可知当直线y=-
3
2
x+
z
2

经过点A时,直线y=-
3
2
x+
z
2
的截距最大,此时z最大,
x-y+2=0
2x-y-3=0
,解得
x=5
y=7
,即A(5,7),
此时zmax=3×5+2×7=29,
故选:C.
点评:本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若对任意的x>1,
x2+3
x-1
≥a恒成立,则a的最大值是(  )
A、4B、6C、8D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-
1
x+1
的单调区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2
sin(2x-
π
4
)+2cos2x的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆O为Rt△ABC的内切圆,已AC=3,BC=4,AB=5,过圆心O的直线l交圆O于P、Q两点,则
BP
CQ
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式x2+ax-c<0的解集为{x|-2<x<1},对于任意的t∈[1,2],函数f(x)=ax3+(m+
1
2
)x2-cx在区间(t,3)上总不是单调函数,m的取什值范围是(  )
A、-
14
3
<m<-3
B、-3<m<-1
C、-
14
3
<m<-1
D、-3<m<0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,AB=AC,AD⊥BC,且AD=1,则
AB
AD
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x3-2x2+x-a>0对一切x∈[
1
2
,+∞)都成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F为抛物线C:y2=4x的焦点,点E在C的准线上,且在x轴上方,线段EF的垂直平分线与C的准线交于点Q(-1,
3
2
),与C交于点P,则△PEF的面积为
 

查看答案和解析>>

同步练习册答案