精英家教网 > 高中数学 > 题目详情
在四边形ABCD中,BC=2,DC=4,且∠A:∠ABC:∠C:∠ADC=3:7:4:10,求AB的长.
考点:余弦定理
专题:解三角形
分析:连接BD,根据∠A:∠ABC:∠C:∠ADC=3:7:4:10,求出C的度数,在三角形BCD中,利用余弦定理求出BD的长,利用勾股定理的逆定理求出∠CBD为直角,进而求出∠ABD的度数,得到∠BDA的度数,在三角形ABD中,利用正弦定理求出AB的长即可.
解答: 解:连结BD,由题意得∠A=45°,∠ABC=105°,∠C=60°,∠ADC=150°,
在△BCD中,由余弦定理得:BD2=BC2+CD2-2BC•CDcosC=4+16-8=12,
解得:BD=2
3

∵BD2+BC2=CD2
∴∠CBD=90°,
∴∠ABD=15°,
∴∠BDA=120°,
在△ABD中,由正弦定理
AB
sin∠ADB
=
BD
sinA

则AB=
BDsin∠ADB
sinA
=
2
3
×
3
2
2
2
=3
2
点评:此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别表示角A,B,C对边的长,满足(2b-c)cosA=acosC
(1)求角A的大小;
(2)已知BC=6,点D在BC边上,
①若AD为△ABC的中线,且b=2
3
,求AD长;
②若AD为△ABC的高,且AD=3
3
,求证:△ABC为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3x,若△ABC中,角C是钝角,那么(  )
A、f(sinA)>f(cosB)
B、f(sinA)<f(cosB)
C、f(sinA)>f(sinB)
D、f(sinA)>f(sinB)

查看答案和解析>>

科目:高中数学 来源: 题型:

圆心在x轴上,经过原点,并且与直线y=4相切的圆的一般方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
,且f(3)=6.
(1)求a的值;
(2)判断f(x)的奇偶性,并证明你的结论;
(3)函数在(3,+∞)上是增函数,还是减函数?并证明你结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=loga|x|(a>0且a≠1),在(-∞,0)上单调递增,则f(a+1)与f(1)的大小关系为(  )
A、f(a+1)=f(1)
B、f(a+1)>f(1)
C、f(a+1)<f(1)
D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

一个总体中有100个个体,随机编号为0、1、2、…、99,依编号顺序平均分成10个小组,组号依次为1、2、…、10,现在用系统抽样方法抽取一个容量为10的样本,规定如果在第一组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=5,则在第七组中抽取的号码是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1
x
+
1
x+3
的定义域是(  )
A、R
B、(-3,+∞)
C、(-∞,-3)
D、(-3,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

化简
tan(π-α)cos(2π-α)sin(-α+
3
2
π)
cos(-α-π)sin(-π-α)
=
 

查看答案和解析>>

同步练习册答案