精英家教网 > 高中数学 > 题目详情
19、已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是
分析:充分利用平面几何图形的条件特点,结合椭圆的定义,得到|F1Q|为定长,从而确定动点Q的轨迹是个什么图形.
解答:解析:∵|PF1|+|PF2|=2a,|PQ|=|PF2|,
∴|PF1|+|PF2|=|PF1|+|PQ|=2a,
即|F1Q|=2a,
∴动点Q到定点F1的距离等于定长2a,故动点Q的轨迹是圆.
故答案:圆.
点评:本题考查了求轨迹方程的方法及定义法.定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

7、已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,过点F2向∠F1PF2的外角平分线作垂线,垂足为M,则点M的轨迹是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的焦点是F1(-1,0),F2(1,0),P为椭圆上一点,且|F1F2|是|PF1|和|PF2|的等差中项.
(Ⅰ)求椭圆的方程;
(Ⅱ)求△PF1F2面积的最大值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的焦点是F1(0,-1)和F2(0,1),离心率e=
12

(I)求此椭圆的标准方程;
(Ⅱ)设点P在此椭圆上,且有|PF1|-|PF2|=1,求∠F1PF2的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的焦点是F1,F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是(  )
A、椭圆B、双曲线的一支C、抛物线D、圆

查看答案和解析>>

同步练习册答案