精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln2(1+x)-
x2
1+x

(I)求函数f(x)的单调区间;
(Ⅱ)若不等式(1+
1
n
)n+a≤e
对任意的n∈N*都成立(其中e是自然对数的底数).求a的最大值.
分析:(Ⅰ)①函数f(x)的定义域是(-1,+∞)求f′(x)判断f′(x)正负②由于f′(x)比较复杂令分子为g(x)判断g(x)单调性从而判断函数值正负③再令h(x)=g′(x),可求当-1<x<0时,h'(x)>0,h(x)在(-1,0)上为增函数,当x>0时,h'(x)<0,h(x)在(0,+∞)上为减函数h(x)在x=0处取得极大值,而h(0)=0,所以g'(x)<0函数g(x)在(-1,+∞)上为减函数于是当-1<x<0时,g(x)>g(0)=0,当x>0时,g(x)<g(0)=0.
(Ⅱ)借用(Ⅰ)结论将题设中不等式变形即可求出a最大值.
解答:解:(Ⅰ)函数f(x)的定义域是(-1,+∞),f′(x)=
2ln(1+x)
1+x
-
x2+2x
(1+x)2
=
2(1+x)ln(1+x)-x2-2x
(1+x)2

设g(x)=2(1+x)ln(1+x)-x2-2x,则g'(x)=2ln(1+x)-2x.
令h(x)=2ln(1+x)-2x,则h′(x)=
2
1+x
-2=
-2x
1+x

当-1<x<0时,h'(x)>0,h(x)在(-1,0)上为增函数,
当x>0时,h'(x)<0,h(x)在(0,+∞)上为减函数.
所以h(x)在x=0处取得极大值,而h(0)=0,所以g'(x)<0(x≠0),
函数g(x)在(-1,+∞)上为减函数.
于是当-1<x<0时,g(x)>g(0)=0,
当x>0时,g(x)<g(0)=0.
所以,当-1<x<0时,f'(x)>0,f(x)在(-1,0)上为增函数.
当x>0时,f'(x)<0,f(x)在(0,+∞)上为减函数.
故函数f(x)的单调递增区间为(-1,0),单调递减区间为(0,+∞).
(Ⅱ)不等式(1+
1
n
)n+a≤e
等价于不等式(n+a)ln(1+
1
n
)≤1

1+
1
n
>1
知,a≤
1
ln(1+
1
n
)
-n

G(x)=
1
ln(1+x)
-
1
x
,x∈(0,1]

G′(x)=-
1
(1+x)ln2(1+x)
+
1
x2
=
(1+x)ln2(1+x)-x2
x2(1+x)ln2(1+x)

由(Ⅰ)知,ln2(1+x)-
x2
1+x
≤0
,即(1+x)ln2(1+x)-x2≤0.
所以G'(x)<0,x∈(0,1],于是G(x)在(0,1]上为减函数.
故函数G(x)在(0,1]上的最小值为G(1)=
1
ln2
-1

所以a的最大值为
1
ln2
-1
点评:本题考查函数单调性问题由于导函数过于复杂方法中多次求导
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案