精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,且Sn=n2-n+1
(1)求数列{an}的通项公式;
(2)各项均为正数的等比数列{bn}中,b1=1,b2+b3=a4,求数列{bn}的前n项和为Tn
分析:(1)利用an=
S1,n=1
Sn-Sn-1,n≥2
,即可得出;
(2)利用等比数列的通项公式和前n项和公式即可得出.
解答:解:(1)Sn=n2-n+1,n≥2时,Sn-1=(n-1)2-(n-1)+1
两式相减得:an=n2-n+1-[(n-1)2-(n-1)+1]=2n-2;
当n=1时,a1=S1=1-1+1=1.
an=
2n-2,n≥2
1,n=1

(2)利用(1)可得a4=2×4-2=6.
设数列{bn}的公比为q,由已知b1=1,b2+b3=a4
b1q+b1q2=6,即q+q2=6,
即q2+q-6=0,
解得q=-3或q=2,
∵an>0,∴q=2.
Tn=
1-2n
1-2
=2n-1
点评:本题考查了an=
S1,n=1
Sn-Sn-1,n≥2
、等比数列的通项公式和前n项和公式等基础知识与基本方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案