精英家教网 > 高中数学 > 题目详情
已知函数f (x)=lnx.
(Ⅰ)函数g(x)=3x-2,若函数F(x)=f(x)+g(x),求函数F(x)的单调区间;
(Ⅱ)函数h(x)=,函数G(x)=h(x)·f(x),若对任意x∈(0,1),
G(x)<-2,求实数a的取值范围.
(Ⅰ)函数的单调递增区间为;函数的单调递减区间为.(Ⅱ)实数的取值范围是
(1)求出F(x),利用导数大(小)于零,确定其单调增(减)区间即可.
(2)先求出G(x)的表示式,然后本题可转化为以任意x∈(0,1), G(x)max<-2,然后求G(x)的最大值即可.
(Ⅰ)函数,其定义域为.…………………………1分
.……………3分
,,函数单调递增,……………………4分
,,函数单调递减,………………………………5分
∴函数的单调递增区间为;函数的单调递减区间为.……6分
(Ⅱ),由已知,因为
所以
①当时,.不合题意.……………………8分
②当时,,由,可得
,则
,方程的判别式
上是增函数,
,所以.………………………10分
,所以存在,使得,对任意上是减函数,
,所以.不合题意综上,实数的取值范围是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数(常数).
(Ⅰ)求的单调区间;(5分)
(Ⅱ)设如果对于的图象上两点,存在,使得的图象在处的切线,求证:.(7分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知是函数的一个极值点。
(1)求;         (2)求函数的单调区间;
(3)若直线与函数的图象有3个交点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数 
(Ⅰ) 当时,求证:;(4分)
(Ⅱ) 在区间恒成立,求实数的范围。(4分)
(Ⅲ) 当时,求证:.(4分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分) 已知R,函数(x∈R).
(1)当时,求函数f(x)的单调递增区间;
(2)函数f(x)是否能在R上单调递减,若能,求出的取值范围;若不能,请说明理由;
(3)若函数f(x)在上单调递增,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.
(Ⅰ)判断函数的单调性并证明;
(Ⅱ)求在区间上的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数f(x)=lnx-(a≠0)
(1)若a=3,b=-2,求f(x)在[,e]的最大值;
(2)若b=2,f(x)存在单调递减区间,求a的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若函数在区间上不是单调函数,试求的取值范围;
(2)直接写出(不需要给出演算步骤)函数的单调递增区间;
(3)如果存在,使函数处取得最小值,试求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线 的单调增区间是(     )
A.;B.; C.;D.;

查看答案和解析>>

同步练习册答案