精英家教网 > 高中数学 > 题目详情
已知1,x,9成等比数列,则实数x=
 
考点:等比数列
专题:等差数列与等比数列
分析:由等比数列的性质得x2=9,由此能求出实数x.
解答: 解:∵1,x,9成等比数列,∴x2=9,
解得x=±3.
故答案为:±3.
点评:本题考查实数值的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在空间直角坐标系中,点P(3,-2,1)关于x轴的对称点坐标为(  )
A、(3,2,-1)
B、(-3,-2,1)
C、(-3,2,-1)
D、(3,2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差为d的等差数列,?n∈N*,an与an+1的等差中项为n.
(1)求a1与d的值;
(2)设bn=2n•an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l1:mx-y-2=0与直线l2:(2-m)x-y+1=0互相平行,则实数m的值为(  )
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
1+sin2x-cos2x
1+sin2x+cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,若输入两个不同的正数,经程序运行后输出的数相同,则称这两个数为“协同数”,那么下面所给的四组数中属于“协同数”的一组是(  )
A、6,64
B、8,16
C、16,256
D、30,512

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位安排四个人在中秋三天假期值班,要求每人值班一天,每天至少有一人值班,且甲不能在中秋节当天值班,则共有不同的安排方法种数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=sin2x,则f(-
17π
6
)=(  )
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,O(0,0),P(4,3),将向量
OP
按顺时针旋转
π
4
后,得向量
OQ
,则点Q的坐标是(  )
A、(
7
2
2
,-
2
2
B、(-
7
2
2
2
2
C、(-2
6
,-1)
D、(2
6
,-1)

查看答案和解析>>

同步练习册答案