精英家教网 > 高中数学 > 题目详情
9.函数f(x)=loga|x|在(0,+∞)上单调递减,则f(-2)<f(a+1)(填“<”,“=”,“>”之一).

分析 由对数函数的性质得0<a<1,1<a+1<2,由此能求出结果.

解答 解:∵函数f(x)=loga|x|在(0,+∞)上单调递减,
∴0<a<1,1<a+1<2,
∴|-2|>|a+1|,
∴f(-2)=loga2<f(a+1)=loga(a+1).
故答案为:<.

点评 本题考查函数值大小的比较,是基础题,解题时要认真审题,注意对数函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.点P在椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1上运动,点A、B分别在x2+(y-4)2=16和x2+(y+4)2=4上运动,则PA+PB的最大值16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知PA⊥正方形ABCD所在平面,E、F分别是AB,PC的中点,二面角P-CD-A=45°.
(1)求证:EF∥面PAD.
(2)求证:面PCE⊥面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.六个人按下列要求站成一排,分别有多少种不同的站法?
(1)甲、乙必须相邻;
(2)甲、乙不相邻;
(3)甲、乙之间恰有两人;
(4)甲不站在左端,乙不站在右端.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.任取x∈[-$\frac{π}{6}$,$\frac{π}{2}$],则使 sinx+cosx∈[1,$\sqrt{2}$]的概率是(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}满足an=$\left\{\begin{array}{l}n\;\;\;(n=1,2,3,4)\\-{a_{n-4}}(n≥5,n∈N)\end{array}\right.$,则a2013=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=alnx+$\frac{1}{x}$+$\frac{1}{{2{x^2}}}$.
(1)当a=2时,
①讨论函数f(x)的单调性;
②求证:2lnx-x-$\frac{x^2}{2}$≤-$\frac{3}{2}$;
(2)证明:(x-1)(e-x-x)+2lnx<$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.写出“x<0”的一个必要非充分条件是x<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在平面直角坐标xOy中,椭圆M:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)经过点(${\sqrt{3}$,$\frac{1}{2}}$),且与圆x2+(y-3)2=4外切,过原点O的直线l的倾斜角为钝角,且直线l交椭圆M于B,C两点,A为椭圆的右顶点.
(1)求椭圆M的方程;
(2)若△ABC的面积为$\frac{{4\sqrt{2}}}{3}$,求直线BC的斜率.

查看答案和解析>>

同步练习册答案